Characterization of rearrangement invariant spaces with fixed points for the Hardy-Littlewood maximal operator

被引:0
|
作者
Martín, J
Soria, J
机构
[1] Univ Autonoma Barcelona, Dept Math, ES-08193 Bellaterra, Barcelona, Spain
[2] Univ Barcelona, Dept Appl Math & Anal, ES-08071 Barcelona, Spain
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the rearrangement invariant spaces for which there exists a nonconstant fixed point, for the Hardy-Littlewood maximal operator (the case for the spaces L-p(R-n) was first considered in [7]). The main result that we prove is that the space L-n/(n-2),L-infinity(R-n) boolean AND L-infinity(R-n) is minimal among those having this property.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条
  • [41] Centered maximal function of Hardy-Littlewood on hyperbolic spaces
    Li, Hong-Quan
    Lohoue, Noel
    [J]. ARKIV FOR MATEMATIK, 2012, 50 (02): : 359 - 378
  • [42] Hardy-Littlewood maximal function on noncommutative Lorentz spaces
    Shao, Jingjing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [43] The Hardy-Littlewood maximal function and weighted Lorentz spaces
    Carro, MJ
    Soria, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 146 - 158
  • [44] Hardy-Littlewood maximal function inequality in Orlicz spaces
    Towghi, Nasser
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) : 17 - 20
  • [45] Non-commutative Hardy-Littlewood maximal operator on symmetric spaces of τ-measurable operators
    Nessipbayev, Y.
    Tulenov, K.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 12 (01)
  • [46] On interpolation of reflexive variable Lebesgue spaces on which the Hardy-Littlewood maximal operator is bounded
    Diening, Lars
    Karlovych, Oleksiy
    Shargorodsky, Eugene
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 347 - 352
  • [47] Hardy-Littlewood maximal function on noncommutative Lorentz spaces
    Jingjing Shao
    [J]. Journal of Inequalities and Applications, 2013
  • [48] Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces
    Zhang, Xingsong
    Wei, Mingquan
    Yan, Dunyan
    He, Qianjun
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 215 - 223
  • [49] Weak-Type Boundedness of the Hardy-Littlewood Maximal Operator on Weighted Lorentz Spaces
    Agora, Elona
    Antezana, Jorge
    Carro, Maria J.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1431 - 1439
  • [50] The Hardy-Littlewood maximal operator on some critical weighted Herz spaces with variable exponent
    Izuki, Mitsuo
    Noi, Takahiro
    [J]. JAEN JOURNAL ON APPROXIMATION, 2016, 8 (02): : 97 - 112