Characterizing Jordan Derivable Maps on Triangular Rings by Local Actions

被引:3
|
作者
Ghahramani, Hoger [1 ]
Ghosseiri, Mohammad Nader [1 ]
Rezaei, Tahereh [1 ]
机构
[1] Univ Kurdistan, Fac Sci, Dept Math, POB 416, Sanandaj, Iran
来源
JOURNAL OF MATHEMATICS | 2022年 / 2022卷
关键词
ADDITIVE DERIVATIONS; NONLINEAR MAPPINGS; NEST-ALGEBRAS;
D O I
10.1155/2022/9941760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that T = Tri (A, M, B) is a 2-torsion free triangular ring, and G = { (A, B) vertical bar AB = 0, A, B is an element of T} boolean OR { (A, X) vertical bar A is an element of T, X is an element of {P, Q}}, where P is the standard idempotent of T and Q = I - P. Let delta: T -> T be a mapping (not necessarily additive) satisfying, (A, B) is an element of G double right arrow delta(A circle B) = A degrees delta(B) + delta(A)degrees B, where A circle B = AB + BA is the Jordan product of T. We obtain various equivalent conditions for delta, specifcally, we show that delta is an additive derivation. Our result generalizes various results in these directions for triangular rings. As an application, delta on nest algebras are determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Linear maps on matrix algebra Jordan derivable at involutory matrices
    Zhou, Jinming
    Wang, Dengyin
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (07): : 913 - 917
  • [32] Decomposition of Jordan automorphisms of strictly triangular matrix algebra over local rings
    Wang, XT
    You, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 : 183 - 193
  • [33] Additivity of Jordan maps on triangular algebras
    Du, Yiqiu
    Wang, Yu
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (08): : 933 - 940
  • [34] Nonlinear skew Jordan derivable maps on factor von Neumann algebras
    Zhang, Fangjuan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10): : 2090 - 2103
  • [35] JORDAN ELEMENTARY MAPS ON ALTERNATIVE RINGS
    da Motta Ferreira, Joao Carlos
    Guzzo, Henrique, Jr.
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 779 - 794
  • [36] Jordan homomorphisms of upper triangular matrix rings
    Wang, Yao
    Wang, Yu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 4063 - 4069
  • [37] Jordan Derivations on Strictly Triangular Matrix Rings
    Kuzucuoglu, Feride
    [J]. ALGEBRA COLLOQUIUM, 2011, 18 (03) : 519 - 522
  • [38] NONLINEAR JORDAN HIGHER DERIVATIONS ON TRIANGULAR RINGS
    Xue, Chunhui
    An, Runling
    Zhang, Huiyuan
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 15 : 56 - 65
  • [39] Jordan isomorphisms of upper triangular matrix rings
    Liu, Cheng-Kai
    Tsai, Wan-Yu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (01) : 143 - 148
  • [40] Commuting Jordan Derivations on Triangular Rings Are Zero
    Hosseini, Amin
    Jing, Wu
    [J]. MATHEMATICAL NOTES, 2024, 115 (5-6) : 1006 - 1016