On-line list coloring of matroids

被引:0
|
作者
Lason, Michal [1 ,2 ]
Lubawski, Wojciech [2 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Matroid; On-line list coloring; Coloring game;
D O I
10.1016/j.dam.2016.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A coloring of a matroid is proper if elements of the same color form an independent set. A theorem of Seymour asserts that a k-colorable matroid is also colorable from any lists of size k. We prove an on-line version of this theorem. That is, a coloring from lists of size k of a k-colorable matroid is possible, even if appearances of colors in the lists are recovered color by color by an adversary, while our job is to assign a color immediately after it is recovered. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:353 / 355
页数:3
相关论文
共 50 条
  • [1] LIST COLORING OF TWO MATROIDS THROUGH REDUCTION TO PARTITION MATROIDS
    Berczi, Kristof
    Schwarcz, Tamas
    Yamaguchi, Yutaro
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2192 - 2209
  • [2] List coloring of matroids and base exchange properties
    Lason, Michal
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 265 - 268
  • [3] Coloring graphs on-line
    Kierstead, HA
    [J]. ONLINE ALGORITHMS, 1998, 1442 : 281 - 305
  • [4] Coloring matroids
    Cordovil, R
    [J]. DISCRETE MATHEMATICS, 1997, 165 : 155 - 160
  • [5] On-line coloring κ-colorable graphs
    Kierstead, HA
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 105 (1) : 93 - 104
  • [6] On-line coloring of perfect graphs
    Kierstead, HA
    Kolossa, K
    [J]. COMBINATORICA, 1996, 16 (04) : 479 - 491
  • [7] Parallel and on-line graph coloring
    Halldorsson, MM
    [J]. JOURNAL OF ALGORITHMS, 1997, 23 (02) : 265 - 280
  • [8] List rankings and on-line list rankings of graphs
    McDonald, Daniel C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 205 : 109 - 125
  • [9] The coloring game on matroids
    Lason, Michal
    [J]. DISCRETE MATHEMATICS, 2017, 340 (04) : 796 - 799
  • [10] On-line independent set by coloring vertices
    Vangelis Th. Paschos
    [J]. Operational Research, 2001, 1 (3) : 213 - 224