Fluorescence resonance energy transfer between polydiacetylene vesicles and embedded benzoxazole molecules for pH sensing

被引:22
|
作者
Seo, Seongwon [1 ]
Kim, Daigeun [1 ]
Jang, Geunseok [1 ]
Kim, Dong-Myung [2 ]
Kim, Dong Wook [3 ]
Seo, Bum-Kyoung [4 ]
Lee, Kune-Woo [4 ]
Lee, Taek Seung [1 ]
机构
[1] Chungnam Natl Univ, Dept Adv Organ Mat & Text Syst Engn, Organ & Optoelect Mat Lab, Taejon 305764, South Korea
[2] Chungnam Natl Univ, Dept Fine Chem Engn & Appl Chem, Taejon 305764, South Korea
[3] Korea Res Inst Chem Technol, Div Adv Mat, Taejon 305343, South Korea
[4] Korea Atom Energy Res Inst, Decontaminat & Decommissioning Res Div, Taejon 305353, South Korea
来源
REACTIVE & FUNCTIONAL POLYMERS | 2013年 / 73卷 / 03期
关键词
Polydiacetylene; FRET; Fluorescence; Encapsulation; pH sensor; INTRAMOLECULAR PROTON-TRANSFER; CONJUGATED POLYMER; COLORIMETRIC DETECTION; SIGNAL AMPLIFICATION; DNA DETECTION; RATIONAL DESIGN; LABEL-FREE; SUPRAMOLECULES; RECOGNITION; LIPOSOMES;
D O I
10.1016/j.reactfunctpolym.2012.11.016
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A mixed polydiacetylenes (PDAs) vesicle with a phospholipid unit is functionalized by entrapping fluorescent benzoxazole (BZ) molecules inside the PDA vesicles. Upon photo-polymerization and heat-treatment of the self-assembled vesicles, a weak red fluorescence can be observed. Excitation of BZ molecules enables the amplification of PDA vesicle fluorescence resonance energy transfer (FRET) to more than four times that of the direct excitation of red-phase PDA vesicles. The backbone of the PDA vesicles act as energy acceptors, which absorb energy from embedded BZ donor molecules inside the PDA vesicle, which emit blue fluorescence. The amplified red emission from the PDA vesicle can be altered by pH changes in the aqueous solution and thus the PDA vesicle mixed with a phospholipid and entrapped molecules inside can be a promising candidate as a pH sensor. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:451 / 456
页数:6
相关论文
共 50 条
  • [41] FLUORESCENCE RESONANCE ENERGY-TRANSFER
    SELVIN, PR
    BIOCHEMICAL SPECTROSCOPY, 1995, 246 : 300 - 334
  • [42] Fluorescence resonance energy transfer sensors
    D J S Birch
    O J Rolinski
    Research on Chemical Intermediates, 2001, 27 : 425 - 446
  • [43] Cytometry of fluorescence resonance energy transfer
    Vereb, G
    Matkó, J
    Szöllösi, J
    CYTOMETRY, 4TH EDITION: NEW DEVELOPMENTS, 2004, 75 : 105 - 152
  • [44] Fluorescence resonance energy transfer sensors
    Birch, DJS
    Rolinski, OJ
    RESEARCH ON CHEMICAL INTERMEDIATES, 2001, 27 (4-5) : 425 - 446
  • [45] The renaissance of fluorescence resonance energy transfer
    Selvin, PR
    NATURE STRUCTURAL BIOLOGY, 2000, 7 (09) : 730 - 734
  • [46] The renaissance of fluorescence resonance energy transfer
    Paul R. Selvin
    Nature Structural Biology, 2000, 7 : 730 - 734
  • [47] Fluorescence Resonance Energy Transfer to Detect Plasma Membrane Perturbations in Giant Plasma Membrane Vesicles
    Sebastiao, Mathew
    Quittot, Noe
    Marcotte, Isabelle
    Bourgault, Steve
    BIO-PROTOCOL, 2023, 13 (19):
  • [48] The fluorescence resonance energy transfer between dye compounds in micellar media
    Aydin, Burcu Meryem
    Acar, Murat
    Arik, Mustafa
    Onganer, Yavuz
    DYES AND PIGMENTS, 2009, 81 (02) : 156 - 160
  • [49] Thermoregulated Formation and Disintegration of Cationic Block Copolymer Vesicles: Fluorescence Resonance Energy Transfer Study
    Maiti, Chiranjit
    Dey, Debabrata
    Mandal, Sarthak
    Dhara, Dibakar
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (08): : 2274 - 2283
  • [50] Fluorescence resonance energy transfer between bovine serum albumin and fluoresceinamine
    Bai, Zhijun
    Liu, Yushuang
    Zhang, Ping
    Guo, Jun
    Ma, Yuxing
    Yun, Xiaoling
    Zhao, Xinmin
    Zhong, Ruibo
    Zhang, Feng
    LUMINESCENCE, 2016, 31 (03) : 688 - 693