Entanglement between electronic and vibrational Schrodinger-cat states in coupled molecules

被引:2
|
作者
Maslova, N. S. [1 ,2 ]
Mantsevich, V. N. [2 ,3 ]
Arseyev, P. I. [4 ]
Sokolov, I. M. [5 ,6 ]
机构
[1] Lomonosov Moscow State Univ, Chair Quantum Elect, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Dept Phys, Quantum Technol Ctr, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, Chair Semicond & Cryoelect, Moscow 119991, Russia
[4] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia
[5] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[6] Humboldt Univ, IRIS Adlershof, Newtonstr 15, D-12489 Berlin, Germany
基金
俄罗斯科学基金会;
关键词
QUANTUM; MANIPULATION; TRANSPORT; BLOCKADE; DYNAMICS;
D O I
10.1103/PhysRevA.101.062514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the present work we theoretically analyze the emergence appearance of entanglement between electronic and vibrational states in a system of two coupled molecules after switching on the interaction between them. In the framework of the adiabatic approach this effect appears because the equilibrium position of one of the molecules is sensitive to its electron occupation. The time evolution of the system shows multiple changes between its entangled and unentangled states. If this evolution starts from a pure coherent vibrational mode state and a state of a single electron localized in one of the molecules, the Schrodinger-cat states can appear during the system's time evolution. The Schrodinger-cat states can arise as a quantum superposition of distinct coherent states of molecule vibrational mode. Such states are entangled with empty and singly occupied electronic states of the molecule. The presence of entanglement between electronic and vibrational molecule states can be revealed by measuring the electron occupation (charge) of a particular molecule.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Quantum entanglement between electronic and vibrational degrees of freedom in molecules
    McKemmish, Laura K.
    McKenzie, Ross H.
    Hush, Noel S.
    Reimers, Jeffrey R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (24):
  • [22] Deterministic creation of entangled atom-light Schrodinger-cat states
    Hacker, Bastian
    Welte, Stephan
    Daiss, Severin
    Shaukat, Armin
    Ritter, Stephan
    Li, Lin
    Rempe, Gerhard
    [J]. NATURE PHOTONICS, 2019, 13 (02) : 110 - +
  • [23] Decoherence and Schrodinger-cat states in a Stern-Gerlach-type experiment
    Venugopalan, A
    [J]. PHYSICAL REVIEW A, 1997, 56 (05): : 4307 - 4310
  • [24] Generation of macroscopic Schrodinger-cat states in qubit-oscillator systems
    Liao, Jie-Qiao
    Huang, Jin-Feng
    Tian, Lin
    [J]. PHYSICAL REVIEW A, 2016, 93 (03)
  • [25] Formation of Schrodinger-cat states in the Morse potential:: Wigner function picture
    Földi, P
    Czirják, A
    Molnár, B
    Benedict, MG
    [J]. OPTICS EXPRESS, 2002, 10 (08): : 376 - 381
  • [26] Shaping of coherent state superpositions via deterministically created Schrodinger-cat states
    Daiss, Severin
    Hacker, Bastian
    Welte, Stephan
    Shaukat, Armin
    Ritter, Stephan
    Li, Lin
    Rempe, Gerhard
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [27] Lower bounds on the size of general Schrodinger-cat states from experimental data
    Froewis, Florian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (11) : 1 - 9
  • [28] THE GENERATION OF MULTIPLE SCHRODINGER-CAT STATES VIA A 4-WAVE INTERACTION
    KILIN, S
    MOGILEVTSEV, D
    [J]. PHYSICS LETTERS A, 1995, 198 (02) : 85 - 88
  • [29] SUPERSTRUCTURES, FRACTIONAL REVIVALS, AND OPTICAL SCHRODINGER-CAT STATES IN THE JAYNES-CUMMINGS MODEL
    GORA, PF
    JEDRZEJEK, C
    [J]. PHYSICAL REVIEW A, 1993, 48 (04): : 3291 - 3300
  • [30] Quantum properties of a single-mode dissipative amplifier against Schrodinger-cat states
    El-Orany, FAA
    Perina, J
    Perinová, V
    Abdalla, MS
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (03) : S153 - S161