Analytical solution for the generalized Kuramoto-Sivashinsky equation by the differential transform method

被引:0
|
作者
Hesam, S. [1 ]
Nazemi, A. R. [1 ]
Haghbin, A. [2 ]
机构
[1] Shahrood Univ, Sch Math Sci, Dept Math, Shahrood, Iran
[2] Ferdowsi Univ Mashhad, Dept Math Sci, Mashhad, Iran
关键词
Kuramoto-Sivashinsky equation; Differential transform method; Exact solution; Closed form solution; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; STABILITY; SYSTEMS; CORE; FLOW;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the numerical solution of the generalized Kuramoto-Sivashinsky equation is presented using the Differential Transform Method (DTM). The DTM is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach, the solution is found in the form of a rapidly convergent series with easily computed components. Numerical experiments demonstrate the accuracy and robustness of the method for solving a class of nonlinear partial differential equations. (C) 2013 Sharif University of Technology. All rights reserved.
引用
收藏
页码:1805 / 1811
页数:7
相关论文
共 50 条
  • [31] On the stochastic Kuramoto-Sivashinsky equation
    Duan, JQ
    Ervin, VJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (02) : 205 - 216
  • [32] REMARKS ON THE KURAMOTO-SIVASHINSKY EQUATION
    NICOLAENKO, B
    SCHEURER, B
    [J]. PHYSICA D, 1984, 12 (1-3): : 391 - 395
  • [33] ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION
    COLLET, P
    ECKMANN, JP
    EPSTEIN, H
    STUBBE, J
    [J]. PHYSICA D, 1993, 67 (04): : 321 - 326
  • [34] The Analytical Solutions of the Stochastic Fractional Kuramoto-Sivashinsky Equation by Using the Riccati Equation Method
    Mohammed, Wael W.
    Albalahi, A. M.
    Albadrani, S.
    Aly, E. S.
    Sidaoui, R.
    Matouk, A. E.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [35] Bifurcation and Stability of Nontrivial Solution to Kuramoto-Sivashinsky Equation
    李常品
    杨忠华
    伍渝江
    [J]. Advances in Manufacturing, 1997, (02) : 95 - 97
  • [36] Existence and nonexistence of a global solution to the Kuramoto-Sivashinsky equation
    V. A. Galaktionov
    E. Mitidieri
    S. I. Pohozaev
    [J]. Doklady Mathematics, 2008, 77 : 238 - 242
  • [37] Cubic Hermite collocation solution of Kuramoto-Sivashinsky equation
    Ganaie, Ishfaq Ahmad
    Arora, Shelly
    Kukreja, V. K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) : 223 - 235
  • [38] Existence and nonexistence of a global solution to the Kuramoto-Sivashinsky equation
    Galaktionov, V. A.
    Mitidieri, E.
    Pohozaev, S. I.
    [J]. DOKLADY MATHEMATICS, 2008, 77 (02) : 238 - 242
  • [39] A moving least squares meshless method for solving the generalized Kuramoto-Sivashinsky equation
    Dabboura, E.
    Sadat, H.
    Prax, C.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2783 - 2787
  • [40] Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation
    Coron, Jean-Michel
    Lu, Qi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 3683 - 3729