Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO2 separation

被引:17
|
作者
Liu, Yuanyuan [1 ]
Li, Xueqin [1 ]
Qin, Yun [1 ]
Guo, Ruili [1 ]
Zhang, Jianshu [1 ]
机构
[1] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Green Proc Chem Engn Xinjiang Bingtuan, Shihezi 832003, Xinjiang, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
hydrophilic polymers; membranes; separation techniques; CARBON-DIOXIDE SEPARATION; GAS SEPARATION; NANOCOMPOSITE MEMBRANES; TRANSPORT-PROPERTIES; COMPOSITE MEMBRANES; CAPTURE; POLYMER; NANOPARTICLES; PERFORMANCE; PERMEATION;
D O I
10.1002/app.44564
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Novel facilitated-transport mixed-matrix membrane (MMM) were prepared through the incorporation of polydopamine (PDA) microspheres into a poly(amide-b-ethylene oxide) (Pebax MH 1657) matrix to separate CO2-CH4 gas mixtures. The Pebax-PDA microsphere MMMs were characterized by Fourier transform infrared spectroscopy, scanning electron microcopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The PDA microspheres acted as an adhesive filler and generated strong interfacial interactions with the polymer matrix; this generated a polymer chain rigidification region near the polymer-filler interface. Polymer chain rigidification usually results in a larger resistance to the transport of gas with a larger molecular diameter and a higher CO2-CH4 selectivity. In addition, the surface of PDA microspheres contained larger numbers of amine, imine, and catechol groups; these were beneficial to the improvement of the CO2 separation performance. Compared with the pristine Pebax membrane, the MMM with a 5 wt % PDA microsphere loading displayed a higher gas permeability and selectivity; their CO2 permeability and CO2-CH4 selectivity were increased by 61 and 60%, respectively, and surpassed the 2008 Robeson upper bound line. (C) 2016 Wiley Periodicals, Inc.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Superior Pebax-1657/amine-modified halloysite nanotubes mixed-matrix membranes to improve the CO2/CH4 separation efficiency
    Ahmadi, Seyed Mohammad Ali
    Mohammadi, Toraj
    Azizi, Navid
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (31)
  • [32] Superior Pebax-1657/amine-modified halloysite nanotubes mixed-matrix membranes to improve the CO2/CH4 separation efficiency
    Mohammadi, Toraj (torajmohammadi@iust.ac.ir), 1600, John Wiley and Sons Inc (138):
  • [33] Research on triazine-based nitrogen-doped porous carbon/Pebax mixed-matrix membranes for CO2 separation and its gas transport mechanism
    Li, Peilin
    Ma, Wenzhong
    Zhong, Jing
    Pan, Yang
    Ren, Xiuxiu
    Guo, Meng
    Wu, Nanhua
    Matsuyama, Hideto
    JOURNAL OF NANOPARTICLE RESEARCH, 2024, 26 (05)
  • [34] Impact of Humidity on the CO2/N2 Separation Performance of Pebax-MOF Mixed Matrix Membranes
    Qin, Zikang
    Feng, Xuan
    Yin, Dengguo
    Xin, Bingru
    Jin, Ziheng
    Deng, Yi
    Yang, Lin
    Yao, Lu
    Jiang, Wenju
    Liu, Chong
    Dai, Zhongde
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (35) : 14034 - 14046
  • [35] Pebax Mixed-Matrix Membrane with Highly Dispersed ZIF-8@CNTs to Enhance CO2/N2 Separation
    Zhang, Yahui
    Tong, Yuping
    Li, Xinyu
    Guo, Shoujie
    Zhang, Hailong
    Chen, Xi
    Cai, Kun
    Cheng, Linghe
    He, Weiwei
    ACS OMEGA, 2021, 6 (29): : 18559 - 18568
  • [36] Applying Pebax-1657/ZnO mixed matrix membranes for CO2/CH4 separation
    Farashi, Zahra
    Azizi, Navid
    Homayoon, Reza
    PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (24) : 2412 - 2419
  • [37] Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation
    Gao, Jie
    Mao, Haizhuo
    Jin, Hua
    Chen, Chen
    Feldhoff, Armin
    Li, Yanshuo
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 297 (297)
  • [38] Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes
    Dong, Guanying
    Hou, Jingwei
    Wang, Jing
    Zhang, Yatao
    Chen, Vicki
    Liu, Jindun
    JOURNAL OF MEMBRANE SCIENCE, 2016, 520 : 860 - 868
  • [39] Preparation of KH560-UiO-66-NH2/Pebax mixed matrix membranes and CO2 separation
    Zhao, Wei
    Liu, Hongjing
    Zhang, Chengpeng
    Cao, Yuyang
    Xu, Yuying
    Liu, Xueli
    Lu, Zhen
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (39)
  • [40] Various Techniques for Preparation of Thin-Film Composite Mixed-Matrix Membranes for CO2 Separation
    Fauzan, Nur Aqilah Bt
    Mannan, Hafiz Abdul
    Nasir, Rizwan
    Mohshim, Dzeti Farhah Bt
    Mukhtar, Hilmi
    CHEMICAL ENGINEERING & TECHNOLOGY, 2019, 42 (12) : 2608 - 2620