A Simplified Small Scale Yielding Estimate Method for Determination of Second Elastic-Plastic Fracture Mechanics Parameter

被引:0
|
作者
Ding, Ping [1 ,2 ]
Wang, Xin [2 ]
机构
[1] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing, Peoples R China
[2] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
elastic-plastic fracture mechanics; two parameter approach; constraint parameter; T-stress; estimate method; simplified formation; small scale yielding; CRACK-TIP FIELDS; TRIAXIALITY PARAMETER; STRESS; FAMILY;
D O I
10.1109/SDPC.2018.00158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two-parameter approaches of elastic-plastic fracture mechanics (EPFM) are used to analyze structure fracture more accurately, especially for the conditions with low crack constraint. A small scale yielding estimate method has been developed by authors previously to conveniently and effectively determine the values of constraint (second) parameter in the J-A two parameter approach under small scale yielding conditions to enable extensive theoretical investigation and engineering application of J-A approach, e.g. the fracture analysis of wind velocity sensor supporting structure. In current work, based on the shape similarity of relation curves between constrain parameter A and T stress, an alternative simplified formation of the previously developed small scale yielding method is suggested to predict the constraint parameter values more conveniently and quickly. The suggested simplified formation of constrain parameter estimate method is validated through comparing predicted A values with their finite element analysis (FEA) results of three mode I crack specimens, single edge cracked plate (SECP), center cracked plate (CCP) and double edge cracked plate (DECP), with various crack depth and hardening exponents.
引用
收藏
页码:810 / 815
页数:6
相关论文
共 50 条
  • [21] APPLICATION OF ELASTIC-PLASTIC FRACTURE MECHANICS PARAMETERS IN FRACTURE SAFE DESIGN
    EGAN, GR
    ROBINSON, JN
    [J]. NUCLEAR ENGINEERING AND DESIGN, 1978, 45 (01) : 133 - 158
  • [22] ELASTIC-PLASTIC ANALYSIS OF CRACKS ON BIMATERIAL INTERFACES .1. SMALL-SCALE YIELDING
    SHIH, CF
    ASARO, RJ
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02): : 299 - 316
  • [23] A COMPUTATIONAL METHOD TO PREDICT ELASTIC-PLASTIC FRACTURE
    CORDES, J
    CHANG, A
    NELSON, N
    KIM, Y
    [J]. ENGINEERING FRACTURE MECHANICS, 1995, 51 (01) : 151 - 159
  • [24] The contributions of George Irwin to elastic-plastic fracture mechanics development
    Landes, JD
    [J]. FATIGUE AND FRACTURE MECHANICS: 31ST VOL, 2000, 1389 : 54 - 63
  • [25] COMMENTS ON CLASSICAL ELASTIC-PLASTIC ANALYSIS FOR FRACTURE MECHANICS STUDIES
    TUBA, IS
    [J]. INTERNATIONAL JOURNAL OF FRACTURE MECHANICS, 1970, 6 (01): : 61 - 64
  • [26] DEVELOPMENT OF A NEW EPRI ELASTIC-PLASTIC FRACTURE MECHANICS HANDBOOK
    Anderson, Ted L.
    Dodds, Robert H., Jr.
    Thorwald, Greg V.
    Dessein, Thomas
    Shim, Do Jun
    [J]. PROCEEDINGS OF ASME 2023 PRESSURE VESSELS & PIPING CONFERENCE, PVP2023, VOL 5, 2023,
  • [27] Influence of crack fractal geometry on elastic-plastic fracture mechanics
    Alves, LM
    da Silva, RV
    Mokross, BJ
    [J]. PHYSICA A, 2001, 295 (1-2): : 144 - 148
  • [28] Fatigue of welded joints described by elastic-plastic fracture mechanics
    Ngoula, Desire Tchoffo
    Beier, Heinz Thomas
    Vormwald, Michael
    [J]. STAHLBAU, 2018, 87 (05) : 491 - 496
  • [29] Elastic-plastic fracture mechanics method for finite internal axial surface cracks in cylinders
    Kim, YJ
    Kim, JS
    Park, YJ
    Kim, YJ
    [J]. ENGINEERING FRACTURE MECHANICS, 2004, 71 (7-8) : 925 - 944
  • [30] Numerical and analytical modeling of elastic-plastic fracture mechanics parameters
    Milovic, Lj.
    Sedmak, A.
    Sedmak, S.
    Putic, S.
    Zrilic, M.
    [J]. RESEARCH TRENDS IN CONTEMPORARY MATERIALS SCIENCE, 2007, 555 : 565 - +