Discharge-ionization of hydrogen on modified carbon nanotube electrodes

被引:1
|
作者
Andriiko, A. A. [1 ]
Globa, N. I. [2 ]
Zul'figarov, A. O. [1 ]
Prisiazhnyi, V. D. [2 ]
Sementsov, Ju. I. [3 ]
Potaskalov, V. A. [1 ]
机构
[1] Natl Tech Univ Ukraine, Kiev Polytech Inst, UA-03056 Kiev, Ukraine
[2] Joint Dept Elect Energy Storage Syst, UA-03142 Kiev, Ukraine
[3] Inst Surface Chem, UA-03164 Kiev, Ukraine
关键词
Catalysts; Electrochemical hydrogen energy storage; Modification; Platinum; Heterometal 2Co-Ni complex; Mechanism; ADSORPTION; STORAGE;
D O I
10.1016/j.ijhydene.2013.02.088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Discharge-ionization of hydrogen on carbon nanotube (CNT) electrodes in H3PO4 aqueous solution has been investigated and the effect of catalysts (Pt and polynuclear complexes 2Co-Ni with aminoethanol ligands) has been studied. It was found that the most probable mechanism contains the slow step of hydrogen atoms recombination on highly energetically nonuniform surface of CNT when the polarization is low. Increasing the polarization for more than -300 to -350 mV vs silver chloride reference electrode results in the operation of the CNT as a porous gas electrode with linear current-potential dependence. The influence of catalysts consists in the, first, decrease of the ohmic resistance of this electrode and, second, increase of the coulomb efficiency of charge (reduction of H+ ions) to discharge (oxidation of stored H-2) from 70 to 80-90%. As follows from the results, the complexes 2Co-Ni can be used instead of Pt in the CNT-based hydrogen storage materials. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5983 / 5988
页数:6
相关论文
共 50 条
  • [31] Determination of Riboflavin at Carbon Nanotube Paste Electrodes Modified with an Anionic Surfactant
    Tigari, Girish
    Manjunatha, Jamballi G.
    Raril, Chenthatill
    Hareesha, Nagarajappa
    CHEMISTRYSELECT, 2019, 4 (07): : 2168 - 2173
  • [32] Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications
    Korivi, Naga S.
    Vangari, Manisha
    Jiang, Li
    APPLIED NANOSCIENCE, 2017, 7 (1-2) : 41 - 45
  • [34] Metal nanoparticles/carbon nanotube modified electrodes for voltammetric determination of boron
    Liv, Lokman
    Dursun, Zekerya
    Nakiboglu, Nuri
    TURKISH JOURNAL OF CHEMISTRY, 2018, 42 (06) : 1611 - 1622
  • [35] Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes
    Wang, MK
    Shen, Y
    Liu, Y
    Wang, T
    Zhao, F
    Liu, BF
    Dong, SJ
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 578 (01) : 121 - 127
  • [36] Carbon nanotube-modified electrodes for electrochemical DNA-sensors
    Abdullin, T. I.
    Nikitina, I. I.
    Ishmukhametova, D. G.
    Budnikov, G. K.
    Konovalova, O. A.
    Salakhov, M. Kh.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2007, 62 (06) : 599 - 603
  • [37] Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes
    Timur, Suna
    Anik, Ulku
    Odaci, Dilek
    Gorton, Lo
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (07) : 1810 - 1815
  • [38] Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes
    Wang, J
    Musameh, M
    ANALYTICA CHIMICA ACTA, 2004, 511 (01) : 33 - 36
  • [39] Electrochemical characterisation of patterned carbon nanotube electrodes on silane modified silicon
    Flavel, Benjamin S.
    Yu, Jingxian
    Shapter, Joseph G.
    Quinton, Jamie S.
    ELECTROCHIMICA ACTA, 2008, 53 (18) : 5653 - 5659
  • [40] Selective determination of quercetin using carbon nanotube-modified electrodes
    Xu, Guang-Ri
    Kim, Sunghyun
    ELECTROANALYSIS, 2006, 18 (18) : 1786 - 1792