Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

被引:10
|
作者
Hsieh, C. -Y. [1 ]
Lin, M. -W. [2 ]
Chen, S. -H. [1 ]
机构
[1] Natl Cent Univ, Dept Phys, Jhongli 32001, Taiwan
[2] Natl Tsing Hua Univ, Inst Nucl Engn & Sci, Hsinchu 30013, Taiwan
关键词
ELECTRON-BEAMS;
D O I
10.1063/1.5009958
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power P-L similar to 2P(cr) of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Laser wakefield acceleration at reduced density in the self-guided regime
    Ralph, J. E.
    Clayton, C. E.
    Albert, F.
    Pollock, B. B.
    Martins, S. F.
    Pak, A. E.
    Marsh, K. A.
    Shaw, J. L.
    Till, A.
    Palastro, J. P.
    Lu, W.
    Glenzer, S. H.
    Silva, L. O.
    Mori, W. B.
    Joshi, C.
    Froula, D. H.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [42] Laser wakefield acceleration driven by a few-terawatt laser pulse in a sub-mm nitrogen gas jet
    Lin, M. -W.
    Chu, T. -Y.
    Chen, Y. -Z.
    Tran, D. K.
    Chu, H. -H.
    Chen, S. -H.
    Wang, J.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [43] Generation of small energy spread electron beam from self-modulated laser wakefield accelerator
    Kim, C
    Ko, IS
    Kim, GH
    Hafz, N
    Suk, H
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 2667 - 2669
  • [44] Observation of a hot high-current electron beam from a self-modulated laser wakefield accelerator
    Santala, MIK
    Najmudin, Z
    Clark, EL
    Tatarakis, M
    Krushelnick, K
    Dangor, AE
    Malka, V
    Faure, J
    Allott, R
    Clarke, RJ
    PHYSICAL REVIEW LETTERS, 2001, 86 (07) : 1227 - 1230
  • [45] Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses
    Albert, F.
    Lemos, N.
    Shaw, J. L.
    Pollock, B. B.
    Goyon, C.
    Schumaker, W.
    Saunders, A. M.
    Marsh, K. A.
    Pak, A.
    Ralph, J. E.
    Martins, J. L.
    Amorim, L. D.
    Falcone, R. W.
    Glenzer, S. H.
    Moody, J. D.
    Joshi, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (13)
  • [46] Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
    Chappell, J.
    Adli, E.
    Agnello, R.
    Aladi, M.
    Andrebe, Y.
    Apsimon, O.
    Apsimon, R.
    Bachmann, A. -M.
    Baistrukov, M. A.
    Batsch, F.
    Bergamaschi, M.
    Blanchard, P.
    Burrows, P. N.
    Buttenschoen, B.
    Caldwell, A.
    Chevallay, E.
    Chung, M.
    Cooke, D. A.
    Damerau, H.
    Davut, C.
    Demeter, G.
    Deubner, L. H.
    Dexter, A.
    Djotyan, G. P.
    Doebert, S.
    Farmer, J.
    Fasoli, A.
    Fedosseev, V. N.
    Fiorito, R.
    Fonseca, R. A.
    Friebel, F.
    Furno, I.
    Garolfi, L.
    Gessner, S.
    Goddard, B.
    Gorgisyan, I.
    Gorn, A. A.
    Granados, E.
    Granetzny, M.
    Grulke, O.
    Gschwendtner, E.
    Hafych, V.
    Hartin, A.
    Helm, A.
    Henderson, J. R.
    Howling, A.
    Huether, M.
    Jacquier, R.
    Jolly, S.
    Kargapolov, I. Yu.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (01):
  • [47] Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator
    Chen, WT
    Chien, TY
    Lee, CH
    Lin, JY
    Wang, J
    Chen, SY
    PHYSICAL REVIEW LETTERS, 2004, 92 (07)
  • [48] OBSERVATION OF ULTRAHIGH GRADIENT ELECTRON ACCELERATION BY A SELF-MODULATED INTENSE SHORT LASER-PULSE
    NAKAJIMA, K
    FISHER, D
    KAWAKUBO, T
    NAKANISHI, H
    OGATA, A
    KATO, Y
    KITAGAWA, Y
    KODAMA, R
    MIMA, K
    SHIRAGA, H
    SUZUKI, K
    YAMAKAWA, K
    ZHANG, T
    SAKAWA, Y
    SHOJI, T
    NISHIDA, Y
    YUGAMI, N
    DOWNER, M
    TAJIMA, T
    PHYSICAL REVIEW LETTERS, 1995, 74 (22) : 4428 - 4431
  • [49] Bunch self-focusing regime of laser wakefield acceleration with reduced emittance growth
    Reitsma, AJW
    Goloviznin, VV
    Kamp, LPJ
    Schep, TJ
    PHYSICAL REVIEW LETTERS, 2002, 88 (01) : 4
  • [50] Parameter study of acceleration of externally injected electrons in the linear laser wakefield regime
    van Dijk, W.
    van der Geer, S. B.
    van der Wiel, M. J.
    Brussaard, G. J. H.
    PHYSICS OF PLASMAS, 2008, 15 (09)