Pseudo-random number generation using LSTMs

被引:5
|
作者
Jeong, Young-Seob [1 ]
Oh, Kyo-Joong [2 ]
Cho, Chung-Ki [1 ]
Choi, Ho-Jin [2 ]
机构
[1] Soonchunhyang Univ, Bigdata Engn Dept, Asan, Chungnam, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Comp, 291 Daehak Ro, Daejeon, South Korea
来源
JOURNAL OF SUPERCOMPUTING | 2020年 / 76卷 / 10期
关键词
Pseudo-random number generation; Recurrent neural networks; SHA-2; Irrational number; NIST test suite;
D O I
10.1007/s11227-020-03229-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Previous studies have developed pseudo-random number generators, where a pseudo-random number is not perfectly random but is practically useful. In this paper, we propose a new system for pseudo-random number generation. Recurrent neural networks with long short-term memory units are used to mimic the appearance of a given sequence of irrational number (e.g., pi), and these are intended to generate pseudo-random numbers in an iterative manner. We design algorithms to ensure that the output sequence contains no repetition or pattern. Through experimental results, we can observe the potential of the proposed system in terms of its randomness and stability. As this system can be used for parameter approximation in machine learning techniques, we believe that it will contribute to various industrial fields such as traffic management and frameworks for sensor networks.
引用
下载
收藏
页码:8324 / 8342
页数:19
相关论文
共 50 条
  • [21] Generalized Delayed Logistic Map Suitable For Pseudo-random Number Generation
    Ismail, Samar M.
    Said, Lobna A.
    Radwan, Ahmed G.
    Madian, Ahmed H.
    Abu-ElYazeed, Mohamed F.
    Soliman, Ahmed M.
    2015 INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY (TICST), 2015, : 327 - 331
  • [22] OPTIMAL MULTIPLIERS FOR PSEUDO-RANDOM NUMBER GENERATION BY THE LINEAR CONGRUENTIAL METHOD
    BOROSH, I
    NIEDERREITER, H
    BIT, 1983, 23 (01): : 65 - 74
  • [23] VERY HIGH-PERFORMANCE PSEUDO-RANDOM NUMBER GENERATION ON DAP
    SMITH, KA
    REDDAWAY, SF
    SCOTT, DM
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 37 (1-3) : 239 - 244
  • [24] Dynamical Pseudo-Random Number Generator Using Reinforcement Learning
    Park, Sungju
    Kim, Kyungmin
    Kim, Keunjin
    Nam, Choonsung
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [25] Efficient pseudo-random number generation for monte-carlo simulations using graphic processors
    Mohanty, Siddhant
    Mohanty, A. K.
    Carminati, F.
    14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011), 2012, 368
  • [26] Generation of pseudo-random test cases
    Duale, A
    Bohizic, T
    Decker, M
    Wittig, D
    Darling, G
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XV, PROCEEDINGS: MOBILE/WIRELESS COMPUTING AND COMMUNICATION SYSTEMS III, 2002, : 338 - 341
  • [27] PSEUDO-RANDOM ANALOG NOISE GENERATION
    KIRLIN, RL
    PROCEEDINGS OF THE IEEE, 1976, 64 (05) : 824 - 826
  • [28] Shared generation of pseudo-random functions
    Wang, HX
    Pieprzyk, J
    JOURNAL OF COMPLEXITY, 2004, 20 (2-3) : 458 - +
  • [29] Pseudo-Random ALC Syntax Generation
    Eberhart, Aaron
    Cheatham, Michelle
    Hitzler, Pascal
    SEMANTIC WEB: ESWC 2018 SATELLITE EVENTS, 2018, 11155 : 19 - 22
  • [30] GENERATION OF NORMAL PSEUDO-RANDOM NUMBERS
    SAKASEGAWA, H
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1978, 30 (02) : 271 - 279