ON THE FREQUENT UNIVERSALITY OF UNIVERSAL TAYLOR SERIES IN THE COMPLEX PLANE

被引:5
|
作者
Mouze, A. [1 ,2 ]
Munnier, V. [2 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, UMR 8524, Cite Sci, F-59650 Villeneuve Dascq, France
[2] Ecole Cent Lille, Cite Sci, CS20048, F-59651 Villeneuve Dascq, France
关键词
HYPERCYCLIC OPERATORS;
D O I
10.1017/S0017089516000069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the classical universal Taylor series in the complex plane are never frequently universal. On the other hand, we prove the 1-upper frequent universality of all these universal Taylor series.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条
  • [31] Boundary behavior of universal Taylor series and their derivatives
    Armitage, DH
    Costakis, G
    CONSTRUCTIVE APPROXIMATION, 2006, 24 (01) : 1 - 15
  • [32] Boundedness, regularity and smoothness of universal Taylor series
    Tsirivas, N.
    ARCHIV DER MATHEMATIK, 2006, 87 (05) : 427 - 435
  • [33] Boundedness, regularity and smoothness of universal Taylor series
    N. Tsirivas
    Archiv der Mathematik, 2006, 87 : 427 - 435
  • [34] Universal Taylor series with maximal cluster sets
    Bernal-Gonzalez, L.
    Bonilla, A.
    Calderon-Moreno, M. C.
    Prado-Bassas, J. A.
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 757 - 780
  • [35] Universal Taylor series on products of planar domains
    Kioulafa K.
    Kotsovolis G.
    Nestoridis V.
    Complex Analysis and its Synergies, 2021, 7 (2)
  • [36] Universal Taylor series on arbitrary planar domains
    Nestoridis, Vassili
    Papachristodoulos, Christos
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (7-8) : 363 - 367
  • [37] Universal Taylor Series in Simply Connected Domains
    Christos Kariofillis
    Vassili Nestoridis
    Computational Methods and Function Theory, 2006, 6 (2) : 437 - 446
  • [38] Smooth universal Taylor series on doubly connected domains
    Bacharoglou, Athanassia
    Kariofillis, Christos
    Konstadilaki, Chariklia
    Vlachou, Vagia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) : 374 - 387
  • [39] A generalization of universal Taylor series in simply connected domains
    Tsirivas, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 361 - 369
  • [40] Existence of Universal Taylor Series for Nonsimply Connected Domains
    Stephen J. Gardiner
    Constructive Approximation, 2012, 35 : 245 - 257