A space-borne visible-NIR hyperspectral imager for coastal phenology

被引:0
|
作者
Osterman, Steve N. [1 ]
Muller-Karger, Frank E. [2 ]
Humm, David C. [1 ]
Noble, Matthew W. [1 ]
Begley, Shawn M. [1 ]
Hersman, Christopher B. [1 ]
Hestir, Erin L. [3 ]
Izenberg, Noam [1 ]
Keller, Mary R. [1 ]
Lees, Jeff [1 ]
Magruder, Adam S. [4 ]
Morgan, Frank [1 ]
Seifert, Helmut [1 ]
Strohbehn, Kim [1 ]
机构
[1] Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA
[2] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA
[3] North Carolina State Univ, Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
[4] Nu Tek Precis Opt Corp, Aberdeen, MD 21001 USA
关键词
Hyperspectral Imaging; Phenology; Coastal Monitoring; CLIMATE-CHANGE; FRESH-WATER; ECOSYSTEM; MARINE; ENVIRONMENTS;
D O I
10.1117/12.2241784
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The temporal variability, or phenology, of animals and plants in coastal zone and marine habitats is a function of geography and climatic conditions, of the chemical and physical characteristics of each particular habitat, and of interactions between these organisms. These conditions play an important role in defining the diversity of life. The quantitative study of phenology is required to protect and make wise use of wetland and other coastal resources. We describe a low cost space-borne sensor and mission concept that will enable such studies using high quality, broad band hyperspectral observations of a wide range of habitats at Landsat-class spatial resolution and with a 3 day or better revisit rate, providing high signal to noise observations for aquatic scenes and consistent view geometry for wetland and terrestrial vegetation scenes.
引用
收藏
页数:13
相关论文
共 42 条
  • [21] Information content of space-borne hyperspectral infrared observations with respect to mineral dust properties
    Klueser, L.
    Banks, J. R.
    Martynenko, D.
    Bergemann, C.
    Brindley, H. E.
    Holzer-Popp, T.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 156 : 294 - 309
  • [22] A New SNR Model for Space-borne Hyperspectral Imagers Including Atmospheric Scattering Influence
    Lang Junwei
    Wang Yueming
    Wang Jianyu
    [J]. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: IMAGING SPECTROMETER TECHNOLOGIES AND APPLICATIONS, 2013, 8910
  • [23] Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images
    V. V. Kozoderov
    T. V. Kondranin
    E. V. Dmitriev
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2017, 53 : 1132 - 1141
  • [24] Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images
    Kozoderov, V. V.
    Kondranin, T. V.
    Dmitriev, E. V.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2017, 53 (09) : 1132 - 1141
  • [25] ANALYSIS OF SPACE-BORNE DATA FOR COASTAL ZONE INFORMATION EXTRACTION OF GOA COAST, INDIA
    KUNTE, PD
    WAGLE, BG
    [J]. OCEAN & COASTAL MANAGEMENT, 1994, 22 (03) : 187 - 200
  • [26] Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries
    Kutser, Tiit
    Miller, Ian
    Jupp, David L. B.
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2006, 70 (03) : 449 - 460
  • [27] Imaging Spectroscopy of Forest Ecosystems: Perspectives for the Use of Space-borne Hyperspectral Earth Observation Systems
    Hill, Joachim
    Buddenbaum, Henning
    Atownsend, Philip
    [J]. SURVEYS IN GEOPHYSICS, 2019, 40 (03) : 553 - 588
  • [28] Imaging Spectroscopy of Forest Ecosystems: Perspectives for the Use of Space-borne Hyperspectral Earth Observation Systems
    Joachim Hill
    Henning Buddenbaum
    Philip A. Townsend
    [J]. Surveys in Geophysics, 2019, 40 : 553 - 588
  • [29] Mapping woody plant community turnover with space-borne hyperspectral data - a case study in the Cerrado
    Leitao, Pedro J.
    Schwieder, Marcel
    Pedroni, Fernando
    Sanchez, Maryland
    Pinto, Jose R. R.
    Maracahipes, Leandro
    Bustamante, Mercedes
    Hostert, Patrick
    [J]. REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2019, 5 (01) : 107 - 115
  • [30] Short-wave infrared signature and detection of aicraft in flight based on space-borne hyperspectral imagery
    王跃明
    谢峰
    王建宇
    [J]. Chinese Optics Letters, 2016, 14 (12) : 132 - 135