THREE DIMENSIONAL NUCLEI SEGMENTATION AND CLASSIFICATION OF FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Han, Shuo [1 ]
Lee, Soonam [1 ]
Chen, Main [1 ]
Yang, Changye [1 ]
Salama, Paul [2 ]
Dunn, Kenneth W. [3 ]
Delp, Edward J. [1 ]
机构
[1] Purdue Univ, Video & Image Proc Lab, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Indiana Univ Purdue Univ, Dept Elect & Comp Engn, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Div Nephrol, Indianapolis, IN USA
基金
美国国家卫生研究院;
关键词
nuclei segmentation; fluorescence microscopy; convolutional neural network; generative adversarial network;
D O I
10.1109/isbi45749.2020.9098560
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Segmentation and classification of cell nuclei in fluorescence 3D microscopy image volumes are fundamental steps for image analysis. However, accurate cell nuclei segmentation and detection in microscopy image volumes are hampered by poor image quality, crowding of nuclei, and large variation in nuclei size and shape. In this paper, we present an unsupervised volume to volume translation approach adapted from the Recycle-GAN using modified Hausdorff distance loss for synthetically generating nuclei with better shapes. A 3D CNN with a regularization termis used for nuclei segmentation and classification followed by nuclei boundary refinement. Experimental results demonstrate that the proposed method can successfully segment nuclei and identify individual nuclei.
引用
收藏
页码:526 / 530
页数:5
相关论文
共 50 条
  • [21] Three-Dimensional Segmentation and Reconstruction of Neuronal Nuclei in Confocal Microscopic Images
    Ruszczycki, Blazej
    Pels, Katarzyna Karolina
    Walczak, Agnieszka
    Zamlynska, Katarzyna
    Such, Michal
    Szczepankiewicz, Andrzej Antoni
    Hall, Malgorzata Hanna
    Magalska, Adriana
    Magnowska, Marta
    Wolny, Artur
    Bokota, Grzegorz
    Basu, Subhadip
    Pal, Ayan
    Plewczynski, Dariusz
    Wilczynski, Grzegorz Marek
    FRONTIERS IN NEUROANATOMY, 2019, 13
  • [22] Automated segmentation and classification of nuclei in histopathological images
    Vincent, Sanjay
    Chandra, J.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 38 (03) : 249 - 266
  • [23] Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information
    Kostrykin, L.
    Schnoerr, C.
    Rohr, K.
    MEDICAL IMAGE ANALYSIS, 2019, 58
  • [24] Chromosome localisation and segmentation in fluorescence microscopy images
    Schabat, Simon
    Colicchio, Bruno
    Courbot, Jean-Baptiste
    Dieterlen, Alain
    M'Kacher, Radhia
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 491 - 495
  • [25] Segmentation of Muscle Fibres in Fluorescence Microscopy Images
    Saez, Aurora
    Montero-Sanchez, Adoracion
    Escudero, Luis M.
    Acha, Begona
    Serrano, Carmen
    IMAGE ANALYSIS AND RECOGNITION, PT II, 2012, 7325 : 465 - 472
  • [26] Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images
    Truong X. Tran
    Marc L. Pusey
    Ramazan S. Aygun
    Journal of Fluorescence, 2020, 30 : 637 - 656
  • [27] Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images
    Tran, Truong X.
    Pusey, Marc L.
    Aygun, Ramazan S.
    JOURNAL OF FLUORESCENCE, 2020, 30 (03) : 637 - 656
  • [28] On Benchmarking Cell Nuclei Segmentation Algorithms for Fluorescence Microscopy
    Wirth, Frederike
    Brinkmann, Eva-Maria
    Brinker, Klaus
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2: BIOIMAGING, 2020, : 164 - 171
  • [29] Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images
    Chang, Y-H
    Yokota, H.
    Abe, K.
    Tasi, M-D
    Chu, S-L
    JOURNAL OF MICROSCOPY, 2021, 281 (01) : 57 - 75
  • [30] Deep Learning-Based Instance Segmentation of Neural Progenitor Cell Nuclei in Fluorescence Microscopy Images
    Perez, Gabriel
    Cecilia Russo, Claudia
    Laura Palumbo, Maria
    David Moroni, Alejandro
    CLOUD COMPUTING, BIG DATA AND EMERGING TOPICS, JCC-BD&ET 2024, 2025, 2189 : 17 - 29