Photoluminescence in amorphous MgSiO3 silicate

被引:6
|
作者
Thompson, S. P. [1 ]
Parker, J. E. [1 ]
Day, S. J. [1 ,2 ]
Connor, L. D. [1 ]
Evans, A. [2 ]
机构
[1] Diamond Light Source, Didcot OX11 0QX, Oxon, England
[2] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England
关键词
radiation mechanisms: non-thermal; methods: laboratory; circumstellar matter; ISM: general; EXTENDED RED EMISSION; BROAD-BAND STRUCTURE; X-RAY-DIFFRACTION; INTERPLANETARY DUST; POROUS SILICON; LUMINESCENCE; CARBON; NANOCRYSTALS; CARRIER; GRAINS;
D O I
10.1093/mnras/stt1203
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Samples of amorphous MgSiO3 annealed at temperature steps leading up to their crystallization temperature show a rise in photoluminescence activity, peaking at similar to 450 degrees C. The photoluminescence band has a main peak at 595 nm and a weaker peak at 624 nm. We present laboratory data to show that the maximum in photoluminescence activity is related to substantial structural reordering that occurs within a relatively narrow temperature range. We attribute the origin of the photoluminescence to non-bridging oxygen hole centre defects, which form around ordered nanosized domain structures as a result of the breakup of tetrahedral connectivity in the disordered inter-domain network, aided by the loss of bonded OH. These defects are removed as crystallization progresses, resulting in the decrease and eventual loss of photoluminescence. Thermally processed hydrogenated amorphous silicate grains could therefore represent a potential carrier of extended red emission.
引用
收藏
页码:2582 / 2592
页数:11
相关论文
共 50 条
  • [41] Thermoluminescence and defect study of MgSiO3 ceramics
    Nagabhushana, H.
    Nagabhushana, B. M.
    Umesh, B.
    Premkumar, H. B.
    Anil, Nalina
    Rao, T. K. Gundu
    Chakradhar, R. P. S.
    PHILOSOPHICAL MAGAZINE, 2010, 90 (12) : 1567 - 1574
  • [42] Post-perovskite phase transition in MgSiO3
    Murakami, M
    Hirose, K
    Kawamura, K
    Sata, N
    Ohishi, Y
    SCIENCE, 2004, 304 (5672) : 855 - 858
  • [43] Fabrication of dense β-wollastonite bioceramics by MgSiO3 addition
    Ahn, Seung Hyun
    Seo, Dong Seok
    Lee, Jong Kook
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2015, 16 (05): : 548 - 554
  • [44] Theoretical study of stationary points of the MgSiO3 molecule
    Patzer, ABC
    Chang, C
    John, M
    Bolick, U
    Sülzle, D
    CHEMICAL PHYSICS LETTERS, 2002, 363 (1-2) : 145 - 151
  • [45] EFFECTS OF PRESSURE ON MELTING + POLYMORPHISM OF ENSTATITE MGSIO3
    BOYD, FR
    ENGLAND, JL
    DAVIS, BTC
    JOURNAL OF GEOPHYSICAL RESEARCH, 1964, 69 (10): : 2101 - +
  • [46] Chromium solubility in MgSiO3 ilmenite at high pressure
    Luca Bindi
    Ekaterina A. Sirotkina
    Andrey V. Bobrov
    Tetsuo Irifune
    Physics and Chemistry of Minerals, 2014, 41 : 519 - 526
  • [47] DFT study of migration enthalpies in MgSiO3 perovskite
    M. W. Ammann
    J. P. Brodholt
    D. P. Dobson
    Physics and Chemistry of Minerals, 2009, 36 : 151 - 158
  • [48] Melting of MgSiO3 determined by machine learning potentials
    Deng, Jie
    Niu, Haiyang
    Hu, Junwei
    Chen, Mingyi
    Stixrude, Lars
    PHYSICAL REVIEW B, 2023, 107 (06)
  • [49] MOLECULAR-DYNAMICS STUDY OF MGSIO3 PEROVSKITE
    MATSUI, M
    PHYSICS AND CHEMISTRY OF MINERALS, 1988, 16 (03) : 234 - 238
  • [50] The mechanism of solution of aluminum oxide in MgSiO3 perovskite
    Stebbins, JF
    Kroeker, S
    Andrault, D
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (04) : 615 - 618