Atomic Layer Deposition of Bismuth Vanadate Core-Shell Nanowire Photoanodes

被引:27
|
作者
Bielinski, Ashley R. [1 ]
Lee, Sudarat [1 ]
Brancho, James J. [2 ]
Esarey, Samuel L. [2 ]
Gayle, Andrew J. [1 ]
Kazyak, Eric [1 ]
Sun, Kai [3 ]
Bartlett, Bart M. [2 ]
Dasgupta, Neil P. [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
SURFACE RECOMBINATION; BIVO4; PHOTOANODES; CHARGE SEPARATION; LIGHT-ABSORPTION; WATER; EFFICIENT; ALD;
D O I
10.1021/acs.chemmater.9b00065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bismuth vanadate (BVO) is a promising metal oxide semiconductor for photoelectrochemical water oxidation. In this study, BVO was deposited using atomic layer deposition (ALD) of alternating films of bismuth and vanadium oxides. A novel Bi-alkoxide precursor was used to enable precise control of stoichiometry along the spectrum of Bi-rich to V-rich compositions, and phase-pure monoclinic BVO films were obtained after postannealing. A planar photoanode composed of an undoped 41.8 nm BVO thin-film electrode with an ALD SnO2 buffer layer produced a photocurrent density of 2.24 mA/cm(2) at 1.23 V vs RHE. ALD was used to conformally coat BVO and SnO2 on a ZnO nanowire template to produce core-shell photoanodes exhibiting a 30% increase in photocurrent density (2.9 mA/cm(2) at 1.23 V) relative to planar control electrodes. This is the highest photocurrent reported to date for an ALD-deposited photoanode, and provides a pathway toward rational design of 3-D nanostructured photoelectrode architectures.
引用
收藏
页码:3221 / 3227
页数:7
相关论文
共 50 条
  • [31] Catalytic Locomotion of Core-Shell Nanowire Motors
    Jang, Bumjin
    Wang, Wei
    Wiget, Samuel
    Petruska, Andrew J.
    Chen, Xiangzhong
    Hu, Chengzhi
    Hong, Ayoung
    Folio, David
    Ferreira, Antoine
    Pane, Salvador
    Nelson, Bradley J.
    ACS NANO, 2016, 10 (11) : 9983 - 9991
  • [32] Core-Shell Structured Nanowire Spin Valves
    Chan, Keith T.
    Doran, Christopher
    Shipton, Erik G.
    Fullerton, Eric E.
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) : 2209 - 2211
  • [33] Research Progress on Core-Shell Nanowire FETs
    He, Jin
    Zhang, Lining
    Zhang, Xiangyu
    Wu, Wen
    Wang, Wenping
    Ma, Miaomiao
    Ye, Yun
    Chan, Mansun
    2014 12TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2014,
  • [34] Core-shell nanowire serves as heat cable
    Liu, Yue-Yang
    Zhou, Wu-Xing
    Tang, Li-Ming
    Chen, Ke-Qiu
    APPLIED PHYSICS LETTERS, 2013, 103 (26)
  • [35] Core-shell nanowire electrodeposition for advanced photovoltaics
    Menke, Erik
    Ghosh, Somnath
    Hujdic, Justin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [36] Core-shell silicon nanowire solar cells
    M. M. Adachi
    M. P. Anantram
    K. S. Karim
    Scientific Reports, 3
  • [37] Core-shell silicon nanowire solar cells
    Adachi, M. M.
    Anantram, M. P.
    Karim, K. S.
    SCIENTIFIC REPORTS, 2013, 3
  • [38] Photon management with core-shell nanowire structures
    Lai, Kun-Yu
    Chang, Hung-Chih
    Dai, Yu-An
    He, Jr-Hau
    OPTICS EXPRESS, 2012, 20 (06): : A255 - A264
  • [39] Modified Si nanowire/graphite-like carbon nitride core-shell photoanodes for solar water splitting
    Ning, Minghui
    Chen, Zhen
    Li, Lin
    Meng, Qingguo
    Chen, Zhihong
    Zhang, Yongguang
    Jin, Mingliang
    Zhang, Zhang
    Yuan, Mingzhe
    Wang, Xin
    Zhou, Guofu
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 87 : 13 - 17
  • [40] Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition
    Weber, Matthieu J.
    Mackus, Adriaan J. M.
    Verheijen, Marcel A.
    van der Marel, Cees
    Kessels, Wilhelmus M. M.
    CHEMISTRY OF MATERIALS, 2012, 24 (15) : 2973 - 2977