Genetic and structural analysis of base substitutions in the central pseudoknot of Thermus thermophilus 16S ribosomal RNA

被引:17
|
作者
Gregory, Steven T. [1 ]
Dahlberg, Albert E. [1 ]
机构
[1] Brown Univ, Dept Biochem Mol Biol & Cell Biol, Providence, RI 02912 USA
基金
美国国家卫生研究院;
关键词
pseudoknot; rRNA; ribosome; streptomycin resistance; Thermus; STREPTOMYCIN-RESISTANCE; CHLOROPLAST; 16S; MUTATIONS; MUTANTS; SUBUNIT; BINDING; TRANSFORMATION; RECOMBINATION; CHLAMYDOMONAS; ANTIBIOTICS;
D O I
10.1261/rna.1374809
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Characterization of base substitutions in rRNAs has provided important insights into the mechanism of protein synthesis. Knowledge of the structural effects of such alterations is limited, and could be greatly expanded with the development of a genetic system based on an organism amenable to both genetics and structural biology. Here, we describe the genetic analysis of base substitutions in 16S ribosomal RNA of the extreme thermophile Thermus thermophilus, and an analysis of the conformational effects of these substitutions by structure probing with base-specific modifying agents. Gene replacement methods were used to construct a derivative of strain HB8 carrying a single 16S rRNA gene, allowing the isolation of spontaneous streptomycin-resistant mutants and subsequent genetic mapping of mutations by recombination. The residues altered to give streptomycin resistance reside within the central pseudoknot structure of 16S rRNA comprised of helices 1 and 27, and participate in the U13-U20-A915 base triple, the G21-A914 type II sheared G-A base pair, or the G885-C912 Watson Crick base pair closing helix 27. Substitutions at any of the three residues engaged in the base triple were found to confer resistance. Results from structure probing of the pseudoknot are consistent with perturbation of RNA conformation by these substitutions, potentially explaining their streptomycin-resistance phenotypes.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 50 条
  • [31] SINGLE BASE ALTERATIONS UPSTREAM OF THE ESCHERICHIA-COLI 16S RIBOSOMAL-RNA CODING REGION RESULT IN TEMPERATURE-SENSITIVE 16S RIBOSOMAL-RNA EXPRESSION
    MORI, H
    DAMMEL, C
    BECKER, E
    TRIMAN, K
    NOLLER, HF
    BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1050 (1-3) : 323 - 327
  • [32] Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus
    Helena Berglund
    Alexey Rak
    Alexander Serganov
    Maria Garber
    Torleif Härd
    Nature Structural Biology, 1997, 4 : 20 - 23
  • [33] Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus
    Berglund, H
    Rak, A
    Serganov, A
    Garber, M
    Hard, T
    NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) : 20 - 23
  • [34] The 16S ribosomal RNA mutation database (16SMDB)
    Triman, KL
    NUCLEIC ACIDS RESEARCH, 1996, 24 (01) : 166 - 168
  • [35] Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus
    Demirci, Hasan
    Larsen, Line H. G.
    Hansen, Trine
    Rasmussen, Anette
    Cadambi, Ashwin
    Gregory, Steven T.
    Kirpekar, Finn
    Jogl, Gerwald
    RNA, 2010, 16 (08) : 1584 - 1596
  • [36] STRUCTURAL HOMOLOGIES OF 18S RIBOSOMAL-RNA OF NOVIKOFF HEPATOMA AND 16S RIBOSOMAL-RNA OF ESCHERICHIA-COLI
    CHOI, YC
    MALINOWSKI, J
    FEDERATION PROCEEDINGS, 1980, 39 (06) : 2200 - 2200
  • [37] ROLE OF 16S RIBOSOMAL-RNA IN RIBOSOMAL BINDING OF IF-3
    PON, CL
    GUALERZI, C
    BIOCHEMISTRY, 1976, 15 (04) : 804 - 811
  • [38] Genetic variation in the mitochondrial 16S ribosomal RNA gene of Ixodes scapularis (Acari: Ixodidae)
    Chantel N Krakowetz
    L Robbin Lindsay
    Neil B Chilton
    Parasites & Vectors, 7
  • [39] Genetic variation in the mitochondrial 16S ribosomal RNA gene of Ixodes scapularis (Acari: Ixodidae)
    Krakowetz, Chantel N.
    Lindsay, L. Robbin
    Chilton, Neil B.
    PARASITES & VECTORS, 2014, 7
  • [40] Genetic evidence against the 16S ribosomal RNA helix 27 conformational switch model
    Rodriguez-Correa, D
    Dahlberg, AE
    RNA, 2004, 10 (01) : 28 - 33