Potential of Fluorophore Labeled Aptamers for Pseudomonas aeruginosa Detection in Drinking Water

被引:29
|
作者
Kim, Lan Hee [1 ]
Yu, Hye-Weon [2 ]
Kim, Yang-Hoon [3 ]
Kim, In S. [1 ]
Jang, Am [4 ]
机构
[1] GIST, Sch Environm Sci & Engn, Kwangju 500712, South Korea
[2] Univ Arizona, Dept Soil Water & Environm Sci, Coll Agr & Life Sci, Tucson, AZ USA
[3] Chungbuk Natl Univ, Dept Microbiol, Cheongju 361763, South Korea
[4] Sungkyunkwan Univ, Dept Civil & Environm Engn, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
aptamer; biosensor; fluorescein isothiocyannate; Pseudomonas aeruginosa; quantum dot; DNA APTAMERS; BIOSENSORS; BACTERIA; CAPTURE; BINDING; PROBES; SIZE;
D O I
10.1007/s13765-013-3019-7
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Pseudomonas aeruginosa has been considered as a representative pathogenic bacteria in drinking water. In order to detect P aeruginosa, aptamers were utilized in this study. In particular, fluorescein isothiocyannate (FITC) and quantum dot (QD) were used for aptamer labeling. FITC-labeled aptamers showed higher binding capacity with optimal incubation time of 30 min compared to QD-labeled aptamers. However, incubation speed did not have any effect on the binding capacity of FITC-labeled aptamers to bacteria. Aptamer-binding capacity was measured according to varying cell concentrations of 0, 10, 100, and 1000 cells/mL. As a result, the limit of detection, limit of quantification, and limit of linearity of P aeruginosa were 5.07, 5.64, and 100 cells/mL, respectively. The low detection limit shows the fluorophore-labeled aptamer potential to detect P aeruginosa labeling in the field.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条
  • [21] Presence of Pseudomonas aeruginosa in coliform-free sachet drinking water in Ghana
    Stoler, Justin
    Ahmed, Hawa
    Frimpong, Lady Asantewa
    Bello, Mohammed
    FOOD CONTROL, 2015, 55 : 242 - 247
  • [22] Prevalence and genetic characterization of Pseudomonas aeruginosa in drinking water in Guangdong Province of China
    Wu, Qingping
    Ye, Yingwang
    Li, Fei
    Zhang, Jumei
    Guo, Weipeng
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2016, 69 : 24 - 31
  • [24] Chloraminated drinking water does not generate bacterial resistance to antibiotics in Pseudomonas aeruginosa biofilms
    Jurgens, D. J.
    Sattar, S. A.
    Mah, T. F.
    LETTERS IN APPLIED MICROBIOLOGY, 2008, 46 (05) : 562 - 567
  • [25] CONTROL OF PSEUDOMONAS-AERUGINOSA INFECTION IN MICE BY CHLORINE TREATMENT OF DRINKING-WATER
    HOMBERGER, FR
    PATAKI, Z
    THOMANN, PE
    LABORATORY ANIMAL SCIENCE, 1993, 43 (06): : 635 - 637
  • [26] Prediction of Pseudomonas aeruginosa abundance in drinking water distribution systems using machine learning
    Zhou, Qiaomei
    Li, Yukang
    Wang, Min
    Huang, Jingang
    Li, Weishuai
    Qiu, Shanshan
    Wang, Haibo
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 193 : 1050 - 1060
  • [27] Disinfection of drinking water from Escherichia coli and Pseudomonas aeruginosa by using silver nanoparticles
    Jawad R.S.
    Younus A.H.
    Abbas H.H.
    Shihab A.
    Jawad A.R.
    Al Muski N.
    Materials Science Forum, 2020, 1002 : 478 - 488
  • [28] Study of the Influence of Pseudomonas aeruginosa on α-Brass and (α + β)-Brass Behavior Against Corrosion in Drinking Water
    Rkayae M.
    Ebn Touhami M.
    Baymou Y.
    Hassani Y.
    Elgoufifa K.
    Allam M.
    Journal of Bio- and Tribo-Corrosion, 2022, 8 (02)
  • [29] Pseudomonas aeruginosa in water meters
    Hoeller, C.
    Huber, S.
    GESUNDHEITSWESEN, 2015, 77
  • [30] New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water
    Yu, Dengbin
    Yong, Yang-Chun
    Liu, Changyu
    Fang, Youxing
    Bai, Lu
    Dong, Shaojun
    CHEMOSPHERE, 2017, 184 : 106 - 111