Approximation and numerical realization of an optimal design welding problem

被引:6
|
作者
Chakib, A. [1 ]
Nachaoui, A. [2 ]
Nachaoui, M. [1 ,2 ]
机构
[1] Univ Sultan Moulay slimane, Lab Math & Applicat, Fac Sci & Tech, BP 523, Beni Mellal, Morocco
[2] Univ Nantes, Lab Math Jean Leray CNRS UMR6629, F-44322 Nantes, France
关键词
welding; free boundary; shape optimization; noncoercive operator; finite element;
D O I
10.1002/num.21767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we deal with the approximation of an optimal shape design approach for a free boundary problem modeling a welding process. We consider discretization of this problem based on linear finite elements. We prove the existence of discrete optimal solutions. This allows us to show the convergence result of a sequence of discrete solutions to the continuous one. Finally, methods for numerical realization are described and several examples have been carried out to illustrate the efficiency of the proposed approach. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:1563 / 1586
页数:24
相关论文
共 50 条
  • [31] ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF A DISTRIBUTED OPTIMAL CONTROL PROBLEM GOVERNED BY THE VON KARMAN EQUATIONS
    Mallik, Gouranga
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 1137 - 1172
  • [32] Numerical approximation based on immersed finite element method for elliptic interface optimal control problem
    Su, Mengya
    Zhang, Zhiyue
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [33] Numerical approximation of bang-bang controls for the teat equation: An optimal design approach
    Muench, Arnaud
    Periago, Francisco
    SYSTEMS & CONTROL LETTERS, 2013, 62 (08) : 643 - 655
  • [34] FINITE-ELEMENT APPROXIMATION OF AN OPTIMAL-DESIGN PROBLEM FOR FREE VIBRATING PLATES
    MYSLINSKI, A
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1986, 82 : 88 - 110
  • [35] OPTIMAL DESIGN FOR ULTRASONIC WELDING HORN
    Kim, Eun Mi
    Kim, Seon Ah
    Jang, Ho Su
    Park, Hong Sam
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON MECHANICAL, INDUSTRIAL, AND MANUFACTURING TECHNOLOGIES (MIMT 2010), 2010, : 41 - 46
  • [36] Selected problem of numerical simulation of welding process
    Kokot, G.
    John, A.
    MECHANIKA 2008, PROCEEDINGS, 2008, : 272 - 277
  • [37] Design and realization of an optimal current sensitive CCC
    Sesé, J
    Rietveld, G
    Camôn, A
    Rillo, C
    Vargas, L
    Brons, GCS
    Hiddink, MGH
    Flokstra, J
    Rogalla, H
    Jaszczuk, W
    Altenburg, H
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1999, 48 (02) : 370 - 374
  • [38] APPROXIMATION METHOD FOR SOLVING OPTIMAL UNIFICATION PROBLEM
    GOLDENGORIN, BI
    ENGINEERING CYBERNETICS, 1979, 17 (01): : 147 - 150
  • [39] APPROXIMATION OF AN OPTIMAL CONTROL PROBLEM FOR A SYSTEM WITH AFTEREFFECT
    KRASOVSK.NN
    DOKLADY AKADEMII NAUK SSSR, 1966, 167 (03): : 540 - &
  • [40] Numerical approximation for a nonlinear membrane problem.
    Kerdid, N
    Le Dret, H
    Saïdi, A
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) : 69 - 74