DESIGN OF PHONONIC MATERIALS USING MULTIRESOLUTION TOPOLOGY OPTIMIZATION

被引:0
|
作者
Vatanabe, Sandro L. [1 ]
Silva, Emlio C. N. [1 ]
机构
[1] Univ Sao Paulo, Dept Mechatron & Mech Syst Engn, Polytech Sch, Sao Paulo, SP, Brazil
关键词
SOUND; CRYSTALS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work the Multiresolution Topology Optimization (MTOP) scheme is investigated to obtain high resolution designs of phononic (elastic) materials, focusing primarily on acoustic waveguides. We demonstrate via numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh. The first one is the simplest case where one might be interested in maximizing the energy reaching certain parts of the domain. The second and more interesting example is the creation of different propagation patterns for different frequencies, thus creating smart filters. The results demonstrate the power and potential of our computational framework to design sophisticated acoustic wave devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A comprehensive survey on topology optimization of phononic crystals
    Guilian Yi
    Byeng D. Youn
    Structural and Multidisciplinary Optimization, 2016, 54 : 1315 - 1344
  • [22] A comprehensive survey on topology optimization of phononic crystals
    Yi, Guilian
    Youn, Byeng D.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (05) : 1315 - 1344
  • [23] A computational paradigm for multiresolution topology optimization (MTOP)
    Tam H. Nguyen
    Glaucio H. Paulino
    Junho Song
    Chau H. Le
    Structural and Multidisciplinary Optimization, 2010, 41 : 525 - 539
  • [24] Simultaneous discrete and continuum multiresolution topology optimization
    Mejias, Gonzalo
    Zegard, Tomas
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (06)
  • [25] Design of piezocomposite materials and piezoelectric transducers using topology optimization—Part II
    E. C. Nelli Silva
    Shinji Nishiwaki
    Noboru Kikuchi
    Archives of Computational Methods in Engineering, 1999, 6 : 191 - 215
  • [26] Optimal design of piezocomposite materials using topology optimization techniques and homogenization on theory
    Silva, ECN
    Fonseca, JSO
    de Espinosa, FRM
    Crumm, A
    Brady, GA
    Halloran, JW
    Kikuchi, N
    1997 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 & 2, 1997, : 883 - 886
  • [27] Compliant mechanism design with non-linear materials using topology optimization
    Daeyoon Jung
    Hae Chang Gea
    International Journal of Mechanics and Materials in Design, 2004, 1 (2) : 157 - 171
  • [28] Design of piezocomposite materials and piezoelectric transducers using topology optimization— Part III
    E. C. Nelli Silva
    N. Kikuchi
    Archives of Computational Methods in Engineering, 1999, 6 (4) : 305 - 329
  • [29] Design of piezocomposite materials and piezoelectric transducers using topology optimization - Part I
    Silva, ECN
    Fonseca, JSO
    de Espinosa, FM
    Crumm, AT
    Brady, GA
    Halloran, JW
    Kikuchi, N
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1999, 6 (02) : 117 - 182
  • [30] Design of piezocomposite materials and piezoelectric transducers using topology optimization—Part I
    E. C. Nelli Silva
    J. S. Ono Fonseca
    F. Montero de Espinosa
    A. T. Crumm
    G. A. Brady
    J. W. Halloran
    N. Kikuchi
    Archives of Computational Methods in Engineering, 1999, 6 (2) : 117 - 182