INVESTIGATION ON THERMAL AND KINETIC CHARACTERISTICS DURING CO-PYROLYSIS OF COAL AND LIGNOCELLULOSIC AGRICULTURAL RESIDUE

被引:0
|
作者
Wu, Zhiqiang [1 ]
Wang, Shuzhong [1 ]
Zhao, Jun [1 ]
Chen, Lin [1 ]
Meng, Haiyu [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Minist Educ, Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
关键词
BLENDS; GASIFICATION; EVOLUTION; BIOMASS; BED;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Co-utilization of coal and lignocellulosic biomass has the potential to reduce greenhouse gases emission from energy production. As a fundamental step of typically thermochemical co-utilization (e.g., co-combustion, co-gasification), co-pyrolysis of coal and lignocellulosic biomass has remarkable effect on the conversation of the further step. Thermal behavior and kinetic analysis are prerequisite for predicting co-pyrolysis performance and modeling co-gasification and co-combustion processes. In this paper, co-pyrolysis behavior of a Chinese bituminous coal blended with lignocellulosic agricultural residue (wheat straw collected from north of China) and model compound (cellulose) were explored via thermogravimetric analyzer. Bituminous coal and lignocellulosic agricultural residue were heated from ambient temperature to 900 degrees C under different heating rates (10, 20, 40 degrees C.min(-1)) with various mass mixing ratios (coal/lignocellulosic agricultural residue ratios of 100, 75/25, 50/50, 25/75 and 0). Activation energy were calculate via iso-conversional method (eg. Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Starink methods). The results indicated that pyrolysis rate of coal was accelerated by wheat straw under all mixing conditions. Cellulose promoted the pyrolysis rate of coal under equal or lesser than 50% mass ratio. Some signs about positive or passive synergistic effect were found in char yield. Char yields were lower than that calculated from individual samples for bituminous coal and wheat straw. With the increasing of cellulose mass ratio, the positive synergies on char yields were reduced, resulting in passive synergistic effect especially under higher coal/cellulose mass ratio (25/75). Non linearity performance was observed from the distribution of activation energy.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics
    Lu, Yang
    Wang, Ying
    Zhang, Jing
    Wang, Qi
    Zhao, Yuqiong
    Zhang, Yongfa
    ENERGY, 2020, 200
  • [32] Co-pyrolysis characteristics and synergistic mechanism of low-rank coal and direct liquefaction residue
    Song, Yonghui
    Yin, Ning
    Yao, Di
    Ma, Qiaona
    Zhou, Jun
    Lan, Xinzhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (21) : 2675 - 2689
  • [33] Pyrolysis Characteristics and Kinetic Analysis of Coal Tar Residue
    Chang, Qiulian
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37 (04): : 924 - 931
  • [34] Kinetic study of coal and biomass co-pyrolysis using thermogravimetry
    Wang, Ping
    Hedges, Sheila W.
    Chaudhari, Kiran
    Turton, Richard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [35] Insight into hydrogen migration and redistribution characteristics during co-pyrolysis of coal and polystyrene
    Wu, Bang
    Guo, Xin
    Liu, Bo
    Liu, Zimeng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 173
  • [36] Co-pyrolysis Characteristics of Torrefied Coconut Shell and Coal
    Zheng, Zhilei
    Zhou, Xin
    Wang, Siqiong
    Li, Qingchun
    Wang, Yunfei
    2020 INTERNATIONAL CONFERENCE ON GREEN CHEMICAL AND ENVIRONMENTAL SCIENCE, 2020, 545
  • [37] Co-pyrolysis characteristics and kinetics of coal and plastic blends
    Zhou, Limin
    Luo, Taian
    Huang, Qunwu
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) : 705 - 710
  • [38] Bench scale co-pyrolysis of a low rank coal and a petroleum residue
    Moliner, R
    Suelves, I
    Lázaro, MJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U799 - U800
  • [39] Co-pyrolysis of pinewood and HDPE: pyrolysis characteristics and kinetic behaviors study
    Luo, Guanqun
    Wang, Weimin
    Zhao, Yuan
    Tao, Xuan
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2023, 18 : 1205 - 1215
  • [40] Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect
    Chen, Wei
    Chen, Yingquan
    Yang, Haiping
    Xia, Mingwei
    Li, Kaixu
    Chen, Xu
    Chen, Hanping
    BIORESOURCE TECHNOLOGY, 2017, 245 : 860 - 868