Higher-order topological sensitivity analysis for the Laplace operator

被引:1
|
作者
Hassine, Maatoug [1 ]
Khelifi, Khalifa [1 ]
机构
[1] Monastir Univ, FSM, Monastir 5019, Tunisia
关键词
FLOW;
D O I
10.1016/j.crma.2016.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with higher-order topological sensitivity analysis for the Laplace operator with respect to the presence of a Dirichlet geometry perturbation. Two main results are presented in this work. In the first one, we discuss the influence of the considered geometry perturbation on the Laplace solution. The second one is devoted to the higher-order topological derivatives. We derive a higher-order topological sensitivity analysis for a large class of shape functions. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:993 / 999
页数:7
相关论文
共 50 条
  • [21] Multipole higher-order topological semimetals
    Qi, Yajuan
    He, Zhaojian
    Deng, Ke
    Li, Jing
    Wang, Yuhua
    [J]. PHYSICAL REVIEW B, 2024, 109 (06)
  • [22] Higher-order topological hyperbolic lattices
    Tao, Yu-Liang
    Xu, Yong
    [J]. PHYSICAL REVIEW B, 2023, 107 (18)
  • [23] Higher-Order Topological Insulators in Quasicrystals
    Chen, Rui
    Chen, Chui-Zhen
    Gao, Jin-Hua
    Zhou, Bin
    Xu, Dong-Hui
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (03)
  • [24] Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators
    Baskakov, A. G.
    Kharitonov, V. D.
    [J]. MATHEMATICAL NOTES, 2017, 101 (3-4) : 391 - 405
  • [25] Spectral analysis of operator polynomials and higher-order difference operators
    A. G. Baskakov
    V. D. Kharitonov
    [J]. Mathematical Notes, 2017, 101 : 391 - 405
  • [26] Higher-order sensitivity to imperfections in bifurcation buckling analysis
    Godoy, LA
    Mook, DT
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (04) : 511 - 520
  • [27] HIGHER-ORDER SENSITIVITY ANALYSIS OF COMPLEX, COUPLED SYSTEMS
    SOBIESZCZANSKISOBIESKI, J
    [J]. AIAA JOURNAL, 1990, 28 (04) : 756 - 758
  • [28] On Higher-Order Sensitivity Analysis in Nonsmooth Vector Optimization
    H. T. H. Diem
    P. Q. Khanh
    L. T. Tung
    [J]. Journal of Optimization Theory and Applications, 2014, 162 : 463 - 488
  • [29] Higher-order sensitivity to imperfections in bifurcation buckling analysis
    Univ of Puerto Rico at Mayaguez, Mayaguez, United States
    [J]. Int J Solids Struct, 4 (511-520):
  • [30] HIGHER-ORDER SENSITIVITY ANALYSIS IN NONCONVEX VECTOR OPTIMIZATION
    Wang, Qilin
    Li, Shengjie
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2010, 6 (02) : 381 - 392