THE COEFFICIENTS OF THE ω(q) MOCK THETA FUNCTION

被引:9
|
作者
Garthwaite, Sharon Anne [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Mock theta functions; Poincare series; modular forms;
D O I
10.1142/S1793042108001869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1920, Ramanujan wrote to Hardy about his discovery of the mock theta functions. In the years since, there has been much work in understanding the transformation properties and asymptotic nature of these functions. Recently, Zwegers proved a relationship between mock theta functions and vector-valued modular forms, and Bringmann and Ono used the theory of Maass forms and Poincare series to prove a conjecture of Andrews, yielding an exact formula for the coefficients of the f(q) mock theta function. Here we build upon these results, using the theory of vector-valued modular forms and Poincare series to prove an exact formula for the coefficients of the omega(q) mock theta function.
引用
收藏
页码:1027 / 1042
页数:16
相关论文
共 50 条
  • [1] Congruences for the coefficients of the mock theta function (q)
    Zhang, Wenlong
    Shi, Ji
    RAMANUJAN JOURNAL, 2019, 49 (02): : 257 - 267
  • [2] Congruences for the coefficients of the Gordon and McIntosh mock theta function ξ(q)
    da Silva, Robson
    Sellers, James A.
    RAMANUJAN JOURNAL, 2022, 58 (03): : 815 - 834
  • [3] ARITHMETIC PROPERTIES OF COEFFICIENTS OF THE MOCK THETA FUNCTION B(q)
    Mao, Renrong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (01) : 50 - 58
  • [4] Bounds for coefficients of the f(q) mock theta function and applications to partition ranks
    Gomez, Kevin
    Zhu, Eric
    JOURNAL OF NUMBER THEORY, 2021, 226 : 1 - 23
  • [5] Overpartitions related to the mock theta function ω(q)
    Andrews, George E.
    Dixit, Atul
    Schultz, Daniel
    Yee, Ae Ja
    ACTA ARITHMETICA, 2017, 181 (03) : 253 - 286
  • [6] Congruences for the Fourier coefficients of the Mathieu mock theta function
    Miezaki, Tsuyoshi
    Waldherr, Matthias
    JOURNAL OF NUMBER THEORY, 2015, 148 : 451 - 462
  • [7] On second order mock theta function B(q)
    Kaur, Harman
    Rana, Meenakshi
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 52 - 65
  • [8] Duality involving the mock theta function f(q)
    Folsom, Amanda
    Ono, Ken
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 320 - 334
  • [9] Maass forms and the mock theta function f(q)
    Scott Ahlgren
    Alexander Dunn
    Mathematische Annalen, 2019, 374 : 1681 - 1718
  • [10] Maass forms and the mock theta function f(q)
    Ahlgren, Scott
    Dunn, Alexander
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1681 - 1718