Preconditioners for saddle point linear systems with highly singular (1,1) blocks

被引:0
|
作者
Greif, C [1 ]
Schotzau, D
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
saddle point linear systems; high nullity; augmentation; block diagonal preconditioners; Krylov subspace iterative solvers;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new preconditioning technique for the iterative solution of saddle point linear systems with ( 1,1) blocks that have a high nullity. The preconditioners are block diagonal and are based on augmentation, using symmetric positive definite weight matrices. If the nullity is equal to the number of constraints, the preconditioned matrices have precisely two distinct eigenvalues, giving rise to immediate convergence of preconditioned MINRES. Numerical examples illustrate our analytical findings.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [31] PRECONDITIONERS FOR SADDLE POINT SYSTEMS WITH TRACE CONSTRAINTS COUPLING 2D AND 1D DOMAINS
    Kuchta, Miroslav
    Nordaas, Magne
    Verschaeve, Joris C. G.
    Mortensen, Mikael
    Mardal, Kent-Andre
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : B962 - B987
  • [32] On the Moore-Penrose inverse in solving saddle-point systems with singular diagonal blocks
    Kucera, R.
    Kozubek, T.
    Markopoulos, A.
    Machalova, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (04) : 677 - 699
  • [33] Block symmetric-triangular preconditioners for generalized saddle point linear systems from piezoelectric equations
    Shen, Qin-Qin
    Shi, Quan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 119 : 100 - 117
  • [34] Generalized shift-splitting preconditioners for nonsingular and singular generalized saddle point problems
    Shen, Qin-Qin
    Shi, Quan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (03) : 632 - 641
  • [35] Block preconditioners with circulant blocks for general linear systems
    Jin, Xiao-Qing
    Lin, Fu-Rong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (07) : 1309 - 1319
  • [36] An analysis of low-rank modifications of preconditioners for saddle point systems
    Greif, Chen
    Overton, Michael L.
    Electronic Transactions on Numerical Analysis, 2010, 37 : 307 - 320
  • [37] ON SIGNED INCOMPLETE CHOLESKY FACTORIZATION PRECONDITIONERS FOR SADDLE-POINT SYSTEMS
    Scott, Jennifer
    Tuma, Miroslav
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06): : A2984 - A3010
  • [38] AN ANALYSIS OF LOW-RANK MODIFICATIONS OF PRECONDITIONERS FOR SADDLE POINT SYSTEMS
    Greif, Chen
    Overton, Michael L.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 307 - 320
  • [39] On symmetric positive definite preconditioners for multiple saddle-point systems
    Pearson, John W.
    Potschka, Andreas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (03) : 1731 - 1750
  • [40] Numerical and computational aspects of some block-preconditioners for saddle point systems
    Dorostkar, Ali
    Neytcheva, Maya
    Lund, Bjoern
    PARALLEL COMPUTING, 2015, 49 : 164 - 178