Classification and identification of mosquito species using artificial neural networks

被引:20
|
作者
Banerjee, Amit Kumar [1 ]
Kiran, K. [2 ]
Murty, U. S. N. [1 ]
Venkateswarlu, Ch. [1 ,2 ]
机构
[1] Indian Inst Chem Technol, Div Biol, Bioinformat Grp, Hyderabad 500007, Andhra Pradesh, India
[2] Indian Inst Chem Technol, Chem Engn Sci Div, Hyderabad 500007, Andhra Pradesh, India
关键词
Artificial neural network; Anopheles; Internal transcribed spacer 2; Mosquitoes; Malaria;
D O I
10.1016/j.compbiolchem.2008.07.020
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An artificial neural network method is presented for classification and identification of Anopheles mosquito species based on the internal transcribed spacer2 (ITS2) data of ribosomal DNA string. The method is implemented in two different multi-layered feed-forward neural network model forms, namely, multi-input single-output neural network (MISONN) and multi-input multi-output neural network (MIMONN). A number of data sequences in varying sizes of different Anopheline malarial vectors and their corresponding species coding are employed to develop the neural network models. The classification efficiency of the network models for untrained data sequences is evaluated in terms of quantitative performance criteria. The results demonstrate the efficiency of the neural network models to extract the genetic information in ITS2 sequences and to adapt to new data. The method of MISONN is found to exhibit superior performance over MIMONN in distinguishing and identification of the mosquito vectors. (C) 2008 Elsevier Ltd. All rights reserved
引用
收藏
页码:442 / 447
页数:6
相关论文
共 50 条
  • [31] Classification of mouse chromosomes using artificial neural networks
    Musavi, MT
    Qiao, M
    Davisson, MT
    Akeson, EC
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 852 - 857
  • [32] Classification of microcalcifications in mammograms using artificial neural networks
    Nguyen, H
    Hung, WT
    Thornton, BS
    Thornton, E
    Lee, W
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 1006 - 1008
  • [33] Classification of Encephalographic Signals using Artificial Neural Networks
    Sepulveda, Roberto
    Montiel, Oscar
    Diaz, Gerardo
    Gutierrez, Daniel
    Castillo, Oscar
    COMPUTACION Y SISTEMAS, 2015, 19 (01): : 69 - 88
  • [34] FAINT OBJECT CLASSIFICATION USING ARTIFICIAL NEURAL NETWORKS
    SERRARICART, M
    ASTRONOMY FROM WIDE-FIELD IMAGING, 1994, (161): : 249 - 252
  • [35] Classification of rainfall variability by using artificial neural networks
    Michaelides, S
    Pattichis, CS
    Kleovoulou, G
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2001, 21 (11) : 1401 - 1414
  • [36] CLASSIFICATION OF WEED SPECIES USING ARTIFICIAL NEURAL NETWORKS BASED ON COLOR LEAF TEXTURE FEATURE
    Li, Zhichen
    An, Qiu
    Ji, Changying
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOLUME 2, 2009, 295 : 1217 - 1225
  • [37] Content of aliphatic hydrocarbons in limpets as a new way for classification of species using artificial neural networks
    Hernández-Borges, J
    Corbella-Tena, R
    Rodríguez-Delgado, MA
    García-Montelongo, FJ
    Havel, J
    CHEMOSPHERE, 2004, 54 (08) : 1059 - 1069
  • [38] A HIERARCHICAL ARTIFICIAL NEURAL SYSTEM FOR GENERA CLASSIFICATION AND SPECIES IDENTIFICATION IN MOSQUITOES
    Venkateswarlu, C.
    Kiran, K.
    Eswari, J. S.
    APPLIED ARTIFICIAL INTELLIGENCE, 2012, 26 (10) : 903 - 920
  • [39] Load identification of the gearbox using artificial neural networks
    Tian, Y
    Zhang, ZB
    ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 1457 - 1460
  • [40] Bridge Damage Identification Using Artificial Neural Networks
    Weinstein, Jordan C.
    Sanayei, Masoud
    Brenner, Brian R.
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (11)