On the maximum entropy parameterized interval approximation of fuzzy numbers

被引:18
|
作者
Liu, XW [1 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
fuzzy numbers; weighting function; interval approximation; maximum entropy;
D O I
10.1016/j.fss.2005.09.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper extends the interval-valued weighted possibilistic mean of a fuzzy number of Fuller and Majlender to a general weighting function without the monotonic increasing assumption. This weighting function determines a weighted average aggregation of the cuts of the fuzzy number according to the preference of a decision-maker. Some properties of the weighting function are provided and a preference index that qualifies this aggregation and can serve as a parameter for the definition of interval approximation of a fuzzy number is proposed. A special class of parameterized weighting functions satisfying the maximal entropy principle is proposed. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:869 / 878
页数:10
相关论文
共 50 条
  • [21] Approximation and Entropy Numbers of Embeddings Between Approximation Spaces
    Fernando Cobos
    Óscar Domínguez
    Thomas Kühn
    Constructive Approximation, 2018, 47 : 453 - 486
  • [22] Approximation and Entropy Numbers of Embeddings Between Approximation Spaces
    Cobos, Fernando
    Dominguez, Oscar
    Kuehn, Thomas
    CONSTRUCTIVE APPROXIMATION, 2018, 47 (03) : 453 - 486
  • [23] Gaussian Approximation Numbers and Metric Entropy
    Kühn T.
    Linde W.
    Journal of Mathematical Sciences, 2019, 238 (4) : 471 - 483
  • [24] Approximation and entropy numbers of composition operators
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    CONCRETE OPERATORS, 2020, 7 (01): : 166 - 179
  • [25] Generalized approximation and estimation of entropy numbers
    K. P. Deepesh
    Advances in Operator Theory, 2024, 9
  • [26] Fuzzy Entropy of Fuzzy Partition on a Finite Interval
    Qing, Ming
    2013 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2013, : 20 - 23
  • [27] Generalized approximation and estimation of entropy numbers
    Deepesh, K. P.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (01)
  • [28] The applications of interval-valued fuzzy numbers and interval-distribution numbers
    Wang, GJ
    Li, XP
    FUZZY SETS AND SYSTEMS, 1998, 98 (03) : 331 - 335
  • [29] Maximum and Minimum of Discrete Fuzzy Numbers
    Casasnovas, Jaume
    Riera, J. Vicente
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2007, 163 : 273 - 280
  • [30] On the topological entropy on the space of fuzzy numbers
    Canovas, Jose S.
    Kupka, Jiri
    FUZZY SETS AND SYSTEMS, 2014, 257 : 132 - 145