Topological data analysis for the string landscape

被引:41
|
作者
Cole, Alex [1 ]
Shiu, Gary [1 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
关键词
Superstring Vacua; Flux compactifications; PERSISTENT COSMIC WEB; FILAMENTARY STRUCTURE; BREAKING;
D O I
10.1007/JHEP03(2019)054
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Persistent homology computes the multiscale topology of a data set by using a sequence of discrete complexes. In this paper, we propose that persistent homology may be a useful tool for studying the structure of the landscape of string vacua. As a scaled-down version of the program, we use persistent homology to characterize distributions of Type IIB flux vacua on moduli space for three examples: the rigid Calabi-Yau, a hypersurface in weighted projective space, and the symmetric six-torus T-6 = (T-2)(3). These examples suggest that persistence pairing and multiparameter persistence contain useful information for characterization of the landscape in addition to the usual information contained in standard persistent homology. We also study how restricting to special vacua with phenomenologically interesting low-energy properties affects the topology of a distribution.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Topological data analysis for the string landscape
    Alex Cole
    Gary Shiu
    Journal of High Energy Physics, 2019
  • [2] Persistence Landscape-based Topological Data Analysis for Personalized Arrhythmia Classification
    Liu, Yushi
    Wang, Lei
    Yan, Yan
    2023 IEEE 19TH INTERNATIONAL CONFERENCE ON BODY SENSOR NETWORKS, BSN, 2023,
  • [3] Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
    Oesterling, Patrick
    Heine, Christian
    Weber, Gunther H.
    Scheuermann, Gerik
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (03) : 514 - 526
  • [4] Topological data analysis
    Epstein, Charles
    Carlsson, Gunnar
    Edelsbrunner, Herbert
    INVERSE PROBLEMS, 2011, 27 (12)
  • [5] Topological Data Analysis
    Reinhard Laubenbacher
    Alan Hastings
    Bulletin of Mathematical Biology, 2019, 81 : 2051 - 2051
  • [6] Topological data analysis
    Oliver Graydon
    Nature Photonics, 2018, 12 : 189 - 189
  • [7] Topological Data Analysis
    Zomorodian, Afra
    ADVANCES IN APPLIED AND COMPUTATIONAL TOPOLOGY, 2012, 70 : 1 - 39
  • [8] Topological Data Analysis
    Wasserman, Larry
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 501 - 532
  • [9] Topological analysis of data
    Alice Patania
    Francesco Vaccarino
    Giovanni Petri
    EPJ Data Science, 6
  • [10] Topological Data Analysis
    Laubenbacher, Reinhard
    Hastings, Alan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 81 (07) : 2051 - 2051