PRUNED HURWITZ NUMBERS

被引:4
|
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Hurwitz numbers; fatgraphs; topological recursion; COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; SPECTRAL CURVE; POLYNOMIALS; INVARIANTS; RECURSION;
D O I
10.1090/tran/7021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten-Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.
引用
收藏
页码:3053 / 3084
页数:32
相关论文
共 50 条
  • [31] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [32] Generating functions for weighted Hurwitz numbers
    Guay-Paquet, Mathieu
    Harnad, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [33] Hurwitz numbers and products of random matrices
    A. Yu. Orlov
    Theoretical and Mathematical Physics, 2017, 192 : 1282 - 1323
  • [34] Hurwitz numbers, ribbon graphs, and tropicalization
    Johnson, Paul
    TROPICAL GEOMETRY AND INTEGRABLE SYSTEMS, 2012, 580 : 55 - 72
  • [35] Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (01) : 237 - 305
  • [36] MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS
    Dumitrescu, Olivia
    Mulase, Motohico
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 307 - 328
  • [37] LOCALIZATION, HURWITZ NUMBERS AND THE WITTEN CONJECTURE
    Chen, Lin
    Li, Yi
    Liu, Kefeng
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 511 - 517
  • [38] Asymptotics of quantum weighted Hurwitz numbers
    Harnad, J.
    Ortmann, Janosch
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (22)
  • [39] ON THE RECURSION FORMULA FOR DOUBLE HURWITZ NUMBERS
    Zhu, Shengmao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3749 - 3760
  • [40] On double Hurwitz numbers with completed cycles
    Shadrin, S.
    Spitz, L.
    Zvonkine, D.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 407 - 432