PRUNED HURWITZ NUMBERS

被引:4
|
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Hurwitz numbers; fatgraphs; topological recursion; COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; SPECTRAL CURVE; POLYNOMIALS; INVARIANTS; RECURSION;
D O I
10.1090/tran/7021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten-Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.
引用
收藏
页码:3053 / 3084
页数:32
相关论文
共 50 条
  • [1] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [2] Bi-pruned Hurwitz numbers
    Hahn, Marvin Anas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 174
  • [3] NOTE ON HURWITZ NUMBERS
    RIEGER, GJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 296 : 212 - 220
  • [4] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [5] Tropical Hurwitz numbers
    Renzo Cavalieri
    Paul Johnson
    Hannah Markwig
    Journal of Algebraic Combinatorics, 2010, 32 : 241 - 265
  • [6] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [7] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [8] Around spin Hurwitz numbers
    A. D. Mironov
    A. Morozov
    S. M. Natanzon
    A. Yu. Orlov
    Letters in Mathematical Physics, 2021, 111
  • [9] Toda equations for Hurwitz numbers
    Okounkov, A
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (04) : 447 - 453
  • [10] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522