Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices

被引:7
|
作者
Chevillard, Laurent [1 ]
Rhodes, Remi [2 ]
Vargas, Vincent [2 ]
机构
[1] ENS Lyon, CNRS, Phys Lab, F-69364 Lyon 07, France
[2] Univ Paris 09, UMR 7564, Ceremade, F-75775 Paris 16, France
关键词
Gaussian multiplicative chaos; Random matrices; Fully developed turbulence; LOCAL-STRUCTURE; TURBULENCE; GRAVITY;
D O I
10.1007/s10955-013-0697-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by isotropic fully developed turbulence, we define a theory of symmetric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the scalar theory developed by J.P. Kahane in 1985.
引用
收藏
页码:678 / 703
页数:26
相关论文
共 50 条
  • [31] Convergence of Processes Time-Changed by Gaussian Multiplicative Chaos
    Ooi, Takumu
    POTENTIAL ANALYSIS, 2025,
  • [32] Gaussian fields, equilibrium potentials and multiplicative chaos for Dirichlet forms
    Masatoshi Fukushima
    Yoichi Oshima
    Potential Analysis, 2021, 55 : 285 - 337
  • [33] Gaussian fields, equilibrium potentials and multiplicative chaos for Dirichlet forms
    Fukushima, Masatoshi
    Oshima, Yoichi
    POTENTIAL ANALYSIS, 2021, 55 (02) : 285 - 337
  • [34] THE TAIL EXPANSION OF GAUSSIAN MULTIPLICATIVE CHAOS AND THE LIOUVILLE REFLECTION COEFFICIENT
    Rhodes, Remi
    Vargas, Vincent
    ANNALS OF PROBABILITY, 2019, 47 (05): : 3082 - 3107
  • [35] EXACT DIMENSIONALITY AND PROJECTION PROPERTIES OF GAUSSIAN MULTIPLICATIVE CHAOS MEASURES
    Falconer, Kenneth
    Jin, Xiong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (04) : 2921 - 2957
  • [36] Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos
    Camia, Federico
    Gandolfi, Alberto
    Peccati, Giovanni
    Reddy, Tulasi Ram
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 889 - 945
  • [37] Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos
    Federico Camia
    Alberto Gandolfi
    Giovanni Peccati
    Tulasi Ram Reddy
    Communications in Mathematical Physics, 2021, 381 : 889 - 945
  • [38] CONVERGENCE IN LAW FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS IN PHASE III
    Lacoin, Hubert
    ANNALS OF PROBABILITY, 2022, 50 (03): : 950 - 983
  • [39] Fractal Gaussian Networks: A sparse random graph model based on Gaussian Multiplicative Chaos
    Ghosh, Subhroshekhar
    Balasubramanian, Krishnakumar
    Yang, Xiaochuan
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [40] Fractal Gaussian Networks: A Sparse Random Graph Model Based on Gaussian Multiplicative Chaos
    Ghosh, Subhroshekhar
    Balasubramanian, Krishnakumar
    Yang, Xiaochuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3234 - 3252