STEADY STATES FOR A SYSTEM DESCRIBING SELF-GRAVITATING FERMI-DIRAC PARTICLES

被引:0
|
作者
Stanczy, Robert [1 ,2 ]
机构
[1] Univ Lodz, Fac Math, PL-90238 Lodz, Poland
[2] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain existence, nonexistence, and multiplicity results for the Dirichlet boundary-value problem -Delta u = f(alpha)(u+c) in a bounded domain Omega subset of R-d, with a nonlocal condition integral(Omega) f(alpha)(u + c) = M. The solutions of this BVP are steady states for some evolution system describing self-gravitating Fermi-Dirac particles.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 50 条
  • [41] Hierarchy of the equilibrium states of self-gravitating systems
    De Martino, A
    Votyakov, EV
    Gross, DHE
    EUROPHYSICS LETTERS, 2003, 62 (01): : 14 - 20
  • [42] Self-similar relaxation of self-gravitating collisionless particles
    Henriksen, RN
    Widrow, LM
    PHYSICAL REVIEW LETTERS, 1997, 78 (18) : 3426 - 3429
  • [43] On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles
    Lu, XG
    JOURNAL OF STATISTICAL PHYSICS, 2001, 105 (1-2) : 353 - 388
  • [44] On the Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation for Fermi-Dirac Particles
    Liu, Bocheng
    Lu, Xuguang
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [45] Statistical thermodynamics for a self-gravitating fluid of rotating particles
    Escamilla, L.
    Torres-Arenas, J.
    Benavides, A. L.
    IX MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS: COSMOLOGY FOR THE XXIST CENTURY, 2013, 1548 : 194 - 204
  • [46] Viscosity in a dense planetary ring with self-gravitating particles
    Daisaka, H
    Tanaka, H
    Ida, S
    ICARUS, 2001, 154 (02) : 296 - 312
  • [47] VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES
    Yasui, Yuki
    Ohtsuki, Keiji
    Daisaka, Hiroshi
    ASTRONOMICAL JOURNAL, 2012, 143 (05):
  • [48] EFFECT OF COSMOLOGICAL EXPANSION ON SELF-GRAVITATING ENSEMBLES OF PARTICLES
    NOERDLINGER, PD
    PETROSIAN, V
    ASTROPHYSICAL JOURNAL, 1971, 168 (01): : 1 - +
  • [49] Approximations for the free evolution of self-gravitating quantum particles
    Grossardt, Andre
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [50] Multi-body Spherically Symmetric Steady States of Newtonian Self-Gravitating Elastic Matter
    Alho, A.
    Calogero, S.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 975 - 1004