Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression

被引:108
|
作者
Jin, Rui
Dobry, Craig J.
McCown, Phillip J.
Kumar, Anuj [1 ]
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1091/mbc.E07-05-0519
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Sigma 1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.
引用
收藏
页码:284 / 296
页数:13
相关论文
共 50 条
  • [21] Gaussian embedding for large-scale gene set analysis
    Wang, Sheng
    Flynn, Emily R.
    Altman, Russ B.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (07) : 387 - 395
  • [22] ODELAY: A Large-scale Method for Multi-parameter Quantification of Yeast Growth
    Herricks, Thurston
    Mast, Fred D.
    Li, Song
    Aitchison, John D.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (125):
  • [23] Large-scale phenotypic analysis -: the pilot project on yeast chromosome III
    Rieger, KJ
    Kaniak, A
    Coppée, JY
    Aljinovic, G
    Baudin-Baillieu, A
    Orlowska, G
    Gromadka, R
    Groudinsky, O
    Di Rago, JP
    Slonimski, PP
    YEAST, 1997, 13 (16) : 1547 - 1562
  • [24] A large-scale sonication assay for cell wall mutant analysis in yeast
    Ruiz, C
    Cid, VJ
    Lussier, M
    Molina, M
    Nombela, C
    YEAST, 1999, 15 (10B) : 1001 - 1008
  • [25] Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways
    Schulz, Juliane Caroline
    Zampieri, Mattia
    Wanka, Stefanie
    von Mering, Christian
    Sauer, Uwe
    SCIENCE SIGNALING, 2014, 7 (353)
  • [26] Large-scale analysis of the yeast proteome by multidimensional protein identification technology
    Michael P. Washburn
    Dirk Wolters
    John R. Yates
    Nature Biotechnology, 2001, 19 : 242 - 247
  • [27] Large-scale analysis of the yeast proteome by multidimensional protein identification technology
    Washburn, MP
    Wolters, D
    Yates, JR
    NATURE BIOTECHNOLOGY, 2001, 19 (03) : 242 - 247
  • [28] Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa
    Carrillo, Alexander J.
    Cabrera, Ilva E.
    Spasojevic, Marko J.
    Schacht, Patrick
    Stajich, Jason E.
    Borkovich, Katherine A.
    BMC GENOMICS, 2020, 21 (01)
  • [29] Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa
    Alexander J. Carrillo
    Ilva E. Cabrera
    Marko J. Spasojevic
    Patrick Schacht
    Jason E. Stajich
    Katherine A. Borkovich
    BMC Genomics, 21
  • [30] A scalable framework for large-scale analysis of gene-gene interactions
    Hmidal, Moez Ben Haj
    Slimani, Yahya
    2014 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2014, : 380 - 384