A VARIATIONAL TIME DISCRETIZATION FOR COMPRESSIBLE EULER EQUATIONS

被引:10
|
作者
Cavalletti, Fabio [1 ]
Sedjro, Marc [2 ]
Westdickenberg, Michael [3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] AIMS Tanzania, Plot 288,Makwahiya St,Regent Estate, Dar Es Salaam, Tanzania
[3] Rhein Westfal TH Aachen, Lehrstuhl Math Anal, Templergraben 55, D-52062 Aachen, Germany
关键词
Compressible gas dynamics; optimal transport; ISENTROPIC GAS-DYNAMICS; WELL-POSEDNESS; CONSERVATION-LAWS; OPTIMAL TRANSPORT; ENTROPY SOLUTIONS; POISSON SYSTEMS; WEAK SOLUTIONS; CONVERGENCE; DISSIPATION; FORMULATION;
D O I
10.1090/tran/7747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a variational time discretization for the multidimensional gas dynamics equations, in the spirit of minimizing movements for curves of maximal slope. Each time step requires the minimization of a functional measuring the acceleration of fluid elements, over the cone of monotone transport maps. We prove convergence to measure-valued solutions for the pressureless gas dynamics and the compressible Euler equations. For one space dimension, we obtain sticky particle solutions for the pressureless case.
引用
收藏
页码:5083 / 5155
页数:73
相关论文
共 50 条
  • [1] Variational iteration method for solving compressible Euler equations
    赵国忠
    蔚喜军
    徐云
    朱江
    [J]. Chinese Physics B, 2010, 19 (07) : 32 - 38
  • [2] Variational iteration method for solving compressible Euler equations
    Zhao Guo-Zhong
    Yu Xi-Jun
    Xu Yun
    Zhu Jiang
    [J]. CHINESE PHYSICS B, 2010, 19 (07)
  • [3] A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids
    Pesch, L.
    van der Vegt, J. J. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) : 5426 - 5446
  • [4] High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations
    Liu, Wei
    Cheng, Juan
    Shu, Chi-Wang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8872 - 8891
  • [5] TOWARDS A GEOMETRIC VARIATIONAL DISCRETIZATION OF COMPRESSIBLE FLUIDS: THE ROTATING SHALLOW WATER EQUATIONS
    Bauer, Werner
    Gay-Balmaz, Francois
    [J]. JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (01): : 1 - 37
  • [6] TIME DECAY OF SOLUTIONS TO THE COMPRESSIBLE EULER EQUATIONS WITH DAMPING
    Chen, Qing
    Tan, Zhong
    [J]. KINETIC AND RELATED MODELS, 2014, 7 (04) : 605 - 619
  • [7] Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations*
    Yuejun Peng
    Shu Wang
    [J]. Chinese Annals of Mathematics, Series B, 2007, 28 : 583 - 602
  • [8] Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations
    Peng, Yuejun
    Wang, Shu
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (05) : 583 - 602
  • [9] Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations
    Yuejun PENG~* Shu WANG~(**) ~*Laboratoire de Mathématiques
    [J]. Chinese Annals of Mathematics, 2007, (05) : 583 - 602
  • [10] Coupling of Compressible Euler Equations
    Herty, Michael
    Mueller, Siegfried
    Sikstel, Aleksey
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (04) : 769 - 792