Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations

被引:51
|
作者
Peng, Yuejun
Wang, Shu
机构
[1] Univ Clermont Ferrand, CNRS, UMR 6620, Math Lab, Aubiere 63177, France
[2] Beijing Polytech Univ, Coll Appl Sci, Beijing 100022, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Maxwell equations; compressible Euler-Poisson equations; non-relativistic limit; asymptotic expansion and convergence;
D O I
10.1007/s11401-005-0556-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the convergence of time-dependent Euler-Maxwell equations to compressible Euler-Poisson equations in a torus via the non-relativistic limit is studied. The local existence of smooth solutions to both systems is proved by using energy estimates for first order symmetrizable hyperbolic systems. For well prepared initial data the convergence of solutions is rigorously justified by an analysis of asymptotic expansions up to any order. The authors perform also an initial layer analysis for general initial data and prove the convergence of asymptotic expansions up to first order.
引用
收藏
页码:583 / 602
页数:20
相关论文
共 50 条
  • [1] Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations*
    Yuejun Peng
    Shu Wang
    [J]. Chinese Annals of Mathematics, Series B, 2007, 28 : 583 - 602
  • [2] Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations
    Yuejun PENG~* Shu WANG~(**) ~*Laboratoire de Mathématiques
    [J]. Chinese Annals of Mathematics, 2007, (05) : 583 - 602
  • [3] Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations
    Yang, Jianwei
    Wang, Shu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [4] Asymptotic Stability of the Compressible Euler-Maxwell Equations to Euler-Poisson Equations
    Liu, Qingqing
    Yin, Haiyan
    Zhu, Changjiang
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1085 - 1108
  • [5] Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Wang, Fuqiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6142 - 6151
  • [6] Convergence of compressible Euler-Maxwell equations to incompressible euler equations
    Peng, Yue-Jun
    Wang, Shu
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) : 349 - 376
  • [7] Compressible Euler-Maxwell equations
    Chen, GQ
    Jerome, JW
    Wang, DH
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5): : 311 - 331
  • [8] Convergence of compressible Euler-Poisson equations to incompressible type Euler equations
    Peng, YJ
    Wang, YG
    [J]. ASYMPTOTIC ANALYSIS, 2005, 41 (02) : 141 - 160
  • [9] Convergence of compressible Euler-Poisson system to incompressible Euler equations
    Wang, Shu
    Yang, Jianwei
    Luo, Dang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3408 - 3418
  • [10] Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations
    Yang, Jianwei
    Wang, Shu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) : 889 - 903