CHALLENGES IN MULTIMODAL DATA FUSION

被引:0
|
作者
Lahat, Dana [1 ]
Adali, Tulay [2 ]
Jutten, Christian [1 ]
机构
[1] CNRS, UMR 5216, GIPSA Lab, Grenoble Campus, F-38400 St Martin Dheres, France
[2] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21250 USA
关键词
Data fusion; multimodality; CANONICAL CORRELATION-ANALYSIS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In various disciplines, information about the same phenomenon can be acquired from different types of detectors, at different conditions, different observations times, in multiple experiments or subjects, etc. We use the term "modality" to denote each such type of acquisition framework. Due to the rich characteristics of natural phenomena, as well as of the environments in which they occur, it is rare that a single modality can provide complete knowledge of the phenomenon of interest. The increasing availability of several modalities at once introduces new degrees of freedom, which raise questions beyond those related to exploiting each modality separately. It is the aim of this paper to evoke and promote various challenges in multimodal data fusion at the conceptual level, without focusing on any specific model, method or application.
引用
收藏
页码:101 / 105
页数:5
相关论文
共 50 条
  • [41] Heterogeneous Sensor Data Fusion By Deep Multimodal Encoding
    Liu, Zuozhu
    Zhang, Wenyu
    Lin, Shaowei
    Quek, Tony Q. S.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (03) : 479 - 491
  • [42] Multimodal Fusion of Brain Imaging Data: Methods and Applications
    Na Luo
    Weiyang Shi
    Zhengyi Yang
    Ming Song
    Tianzi Jiang
    Machine Intelligence Research, 2024, 21 : 136 - 152
  • [43] Multimodal Data Fusion Framework For Fake News Detection
    Athira, A. B.
    Tiwari, Abhishek
    Kumar, S. D. Madhu
    Chacko, Anu Mary
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [44] Multimodal biometric fusion using data quality information
    Wang, YC
    Casasent, D
    OPTICAL PATTERN RECOGNITION XVI, 2005, 5816 : 329 - 338
  • [45] An Improved Privacy Protection Algorithm for Multimodal Data Fusion
    Chen, Z. F.
    Shuai, J. J.
    Tian, F. J.
    Li, W. Y.
    Zang, S. H.
    Zhang, X. Z.
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [46] A survey of multimodal event detection based on data fusion
    Mondal, Manuel
    Khayati, Mourad
    Sandlin, Hông-Ân
    Cudré-Mauroux, Philippe
    VLDB Journal, 2025, 34 (01):
  • [47] Multimodal Fusion of Voice and Gesture Data for UAV Control
    Xiang, Xiaojia
    Tan, Qin
    Zhou, Han
    Tang, Dengqing
    Lai, Jun
    DRONES, 2022, 6 (08)
  • [48] Editorial Note: Multimodal Data Fusion, Learning and Applications
    Multimedia Tools and Applications, 2017, 76 : 11959 - 11959
  • [49] Data fusion methods in multimodal human computer dialog
    YANG M.-H.
    TAO J.-H.
    Virtual Reality and Intelligent Hardware, 2019, 1 (01): : 21 - 38
  • [50] Multimodal Fusion of Brain Imaging Data: Methods and Applications
    Luo, Na
    Shi, Weiyang
    Yang, Zhengyi
    Song, Ming
    Jiang, Tianzi
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (01) : 136 - 152