Branch-width and well-quasi-ordering in matroids and graphs

被引:64
|
作者
Geelen, JF [1 ]
Gerards, AMH
Whittle, G
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] CWI, NL-1090 GB Amsterdam, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Univ Victoria, Sch Math & Comp Sci, Wellington, New Zealand
基金
加拿大自然科学与工程研究理事会;
关键词
matroids; graphs; minors; finite fields; connectivity; submodularity; branch-width; tree-width; well-quasi-ordering;
D O I
10.1006/jctb.2001.2082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work. the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:270 / 290
页数:21
相关论文
共 50 条
  • [41] Labelled Induced Subgraphs and Well-Quasi-Ordering
    Aistis Atminas
    Vadim V. Lozin
    Order, 2015, 32 : 313 - 328
  • [42] Well-Quasi-Ordering versus Clique-Width: New Results on Bigenic Classes
    Dabrowski, Konrad K.
    Lozin, Vadim V.
    Paulusma, Daniel
    Combinatorial Algorithms, 2016, 9843 : 253 - 265
  • [43] Clique-width and well-quasi-ordering of triangle-free graph classes
    Dabrowski, Konrad K.
    Lozin, Vadim V.
    Paulusma, Daniel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 108 (108) : 64 - 91
  • [44] Branch-width, parse trees, and monadic second-order logic for matroids
    Hlineny, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (03) : 325 - 351
  • [45] Well-Quasi-Ordering Hereditarily Finite Sets
    Policriti, Alberto
    Tomescu, Alexandru I.
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2011, 6638 : 440 - 451
  • [46] A Counterexample Regarding Labelled Well-Quasi-Ordering
    Robert Brignall
    Michael Engen
    Vincent Vatter
    Graphs and Combinatorics, 2018, 34 : 1395 - 1409
  • [47] Well-quasi-ordering and finite distinguishing number
    Atminas, Aistis
    Brignall, Robert
    JOURNAL OF GRAPH THEORY, 2020, 95 (01) : 5 - 26
  • [48] Minor-Minimal Planar Graphs of Even Branch-Width
    Inkmann, Torsten
    Thomas, Robin
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (01): : 73 - 82
  • [49] Integer packing sets form a well-quasi-ordering
    Del Pia, Alberto
    Gijswijt, Dion
    Linderoth, Jeff
    Zhu, Haoran
    OPERATIONS RESEARCH LETTERS, 2021, 49 (02) : 226 - 230
  • [50] Strong immersion is a well-quasi-ordering for semicomplete digraphs
    Barbero, Florian
    Paul, Christophe
    Pilipczuk, Michal
    JOURNAL OF GRAPH THEORY, 2019, 90 (04) : 484 - 496