Sharp dimension estimates of holomorphic functions and rigidity

被引:14
|
作者
Chen, BL [1 ]
Fu, XY [1 ]
Yin, L [1 ]
Zhu, XP [1 ]
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
D O I
10.1090/S0002-9947-05-04105-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n be a complete noncompact Kahler manifold of complex dimension n with nonnegative holomorphic bisectional curvature. Denote by O-d(M-n) the space of holomorphic functions of polynomial growth of degree at most d on M-n. In this paper we prove that dim(C)O(d)(M-n) <= dim(C)O([d])(C-n), for all d > 0, with equality for some positive integer d if and only if M-n is holomorphically isometric to C-n. We also obtain sharp improved dimension estimates when its volume growth is not maximal or its Ricci curvature is positive somewhere.
引用
收藏
页码:1435 / 1454
页数:20
相关论文
共 50 条
  • [21] Sharp estimates for iterated Green functions
    Grunau, HC
    Sweers, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 91 - 120
  • [22] Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
    Isangulova, D. V.
    DOKLADY MATHEMATICS, 2019, 100 (02) : 480 - 484
  • [23] Sharp Estimates for the Gaussian Torsional Rigidity with Robin Boundary Conditions
    Francesco Chiacchio
    Nunzia Gavitone
    Carlo Nitsch
    Cristina Trombetti
    Potential Analysis, 2023, 59 : 1107 - 1116
  • [24] Sharp Estimates for the Gaussian Torsional Rigidity with Robin Boundary Conditions
    Chiacchio, Francesco
    Gavitone, Nunzia
    Nitsch, Carlo
    Trombetti, Cristina
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1107 - 1116
  • [25] Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
    D. V. Isangulova
    Doklady Mathematics, 2019, 100 : 480 - 484
  • [26] Holder estimates and regularity for holomorphic and harmonic functions
    Li, P
    Wang, JP
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 58 (02) : 309 - 329
  • [27] SOME ESTIMATES OF COEFFICIENTS OF BOUNDED HOLOMORPHIC FUNCTIONS
    BAVRIN, II
    DOKLADY AKADEMII NAUK SSSR, 1965, 161 (03): : 503 - +
  • [28] Estimates for derivatives of holomorphic functions in a hyperbolic domain
    Li, Jian-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) : 581 - 591
  • [29] Entropy numbers and box dimension of polynomials and holomorphic functions
    Carando, Daniel
    D'Andrea, Carlos
    Torres, Leodan A.
    Turco, Pablo
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (02) : 567 - 580
  • [30] SHARP ESTIMATES OF CONVOLUTIONS IN TERMS OF DECREASING FUNCTIONS
    SAMPSON, GM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 417 - &