Let M-n be a complete noncompact Kahler manifold of complex dimension n with nonnegative holomorphic bisectional curvature. Denote by O-d(M-n) the space of holomorphic functions of polynomial growth of degree at most d on M-n. In this paper we prove that dim(C)O(d)(M-n) <= dim(C)O([d])(C-n), for all d > 0, with equality for some positive integer d if and only if M-n is holomorphically isometric to C-n. We also obtain sharp improved dimension estimates when its volume growth is not maximal or its Ricci curvature is positive somewhere.
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Via Cintia, I-80126 Naples, ItalyUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56126 Pisa, Italy
Lo Bianco, Serena Guarino
Marini, Michele
论文数: 0引用数: 0
h-index: 0
机构:
Scuola Int Super Avanzati, Via Bonomea 265, I-34136 Trieste, ItalyUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56126 Pisa, Italy