Reduced optical loss in mechanically stacked multi-junction organic solar cells exhibiting complementary absorptions

被引:5
|
作者
Lin, Yen-Tseng [1 ]
Chou, Chu-Hsien [2 ]
Chen, Fang-Chung [2 ]
Chu, Chih-Wei [3 ]
Hsu, Chain-Shu [4 ]
机构
[1] Natl Chiao Tung Univ, Inst Lighting & Energy Photon, Tainan 71150, Taiwan
[2] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[3] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan
[4] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
来源
OPTICS EXPRESS | 2014年 / 22卷 / 05期
关键词
DETAILED BALANCE LIMIT; CONVERSION EFFICIENCY; POLYMER; PHOTOVOLTAICS;
D O I
10.1364/OE.22.00A481
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper describes a promising approach toward preparing effective electrical and optical interconnections for tandem organic photovoltaic devices (OPVs). The first subcell featured a semi-transparent electrode, which allowed a portion of the solar irradiation to pass through and to enter the second subcell exhibiting complementary absorption behavior. The resulting multi-junction OPV had multiple contacts such that the subcells could be easily connected either in series or in parallel. More importantly, we used UV-curable epoxy to "mechanically" stack the two subcells and to eliminate the air gap between them, thereby reducing the optical loss induced by mismatches of refractive indices. Therefore, an improved power conversion efficiency of approximately 6.5% has been achieved. (C) 2014 Optical Society of America
引用
收藏
页码:A481 / A490
页数:10
相关论文
共 50 条
  • [21] Multi-Diode Modeling of Multi-Junction Solar Cells
    Shekoofa, Omid
    Wang, Jian
    2015 23RD IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 1164 - 1168
  • [22] Overview and loss analysis of III-V single-junction and multi-junction solar cells
    Yamaguchi, Masafumi
    Dimroth, Frank
    Ekins-Daukes, Nicholas J.
    Kojima, Nobuaki
    Ohshita, Yoshio
    EPJ PHOTOVOLTAICS, 2022, 13
  • [23] Modeling of multi-junction solar cells by Crosslight APSYS
    Li, Z. Q.
    Xiao, Y. G.
    Li, Z. M. Simon
    HIGH AND LOW CONCENTRATION FOR SOLAR ELECTRIC APPLICATIONS, 2006, 6339
  • [24] GaAs/InGaAsN heterostructures for multi-junction solar cells
    Nikitina, E. V.
    Gudovskikh, A. S.
    Lazarenko, A. A.
    Pirogov, E. V.
    Sobolev, M. S.
    Zelentsov, K. S.
    Morozov, I. A.
    Egorov, A. Yu.
    SEMICONDUCTORS, 2016, 50 (05) : 652 - 655
  • [25] III-V multi-junction solar cells
    1600, Royal Society of Chemistry (2014-January):
  • [26] GaAs/InGaAsN heterostructures for multi-junction solar cells
    E. V. Nikitina
    A. S. Gudovskikh
    A. A. Lazarenko
    E. V. Pirogov
    M. S. Sobolev
    K. S. Zelentsov
    I. A. Morozov
    A. Yu. Egorov
    Semiconductors, 2016, 50 : 652 - 655
  • [27] Nanobonding for Multi-Junction Solar Cells at Room Temperature
    Yu, T.
    Howlader, M. M. R.
    Zhang, F.
    Bakr, M.
    SILICON COMPATIBLE MATERIALS, PROCESSES, AND TECHNOLOGIES FOR ADVANCED INTEGRATED CIRCUITS AND EMERGING APPLICATIONS, 2011, 35 (02): : 3 - 10
  • [28] HIGH-EFFICIENCY MULTI-JUNCTION SOLAR CELLS
    JAMES, LW
    MOON, RL
    FAIRMAN, RD
    BELL, RL
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1975, 22 (11) : 1061 - 1061
  • [29] Dendrite growth and degradation in multi-junction solar cells
    Speckman, D
    Marvin, D
    Nocerino, J
    PROGRESS IN PHOTOVOLTAICS, 2005, 13 (02): : 157 - 163
  • [30] Spectrum tuning in multi-junction solar cells measurements
    Bogomolova, S. A.
    Shvarts, M. Z.
    Timoshina, N. Kh.
    INTERNATIONAL CONFERENCE PHYSICA.SPB/2016, 2017, 929