longitudinal semicontinuous variables;
Monte Carlo integration;
multivariate two-part latent growth curve model;
PARTICIPATION;
TRAJECTORIES;
CHILDREN;
D O I:
10.1080/10705511.2014.856699
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously study change in the probability that an individual engages in a behavior, and if engaged, change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study the interrelationships between the growth factors of 2 variables measured longitudinally where each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is developed to estimate the model to take into account the sampling uncertainty of this simulation-based computational approach. A sample of time-use data is used to show how maximum likelihood estimates can be obtained using a rectangular numerical integration method and an MC integration method.
机构:
Durham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Smith, Valerie A.
Preisser, John S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Preisser, John S.
Neelon, Brian
论文数: 0引用数: 0
h-index: 0
机构:
Durham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Neelon, Brian
Maciejewski, Matthew L.
论文数: 0引用数: 0
h-index: 0
机构:
Durham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Duke Univ, Med Ctr, Dept Med, Div Gen Internal Med, Durham, NC 27710 USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA