Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models

被引:37
|
作者
Alaka, Shakiru A. [1 ]
Menon, Bijoy K. [1 ,2 ,3 ]
Brobbey, Anita [1 ]
Williamson, Tyler [1 ]
Goyal, Mayank [2 ,3 ]
Demchuk, Andrew M. [2 ]
Hill, Michael D. [1 ,2 ,3 ]
Sajobi, Tolulope T. [1 ,2 ]
机构
[1] Univ Calgary, OBrien Inst Publ Hlth, Dept Community Hlth Sci, Calgary, AB, Canada
[2] Univ Calgary, Hotchkiss Brain Inst, Dept Clin Neurosci, Calgary, AB, Canada
[3] Univ Calgary, Dept Radiol, Calgary, AB, Canada
来源
FRONTIERS IN NEUROLOGY | 2020年 / 11卷
关键词
machine learning; acute ischemic stroke; functional outcome; clinical risk prediction; discrimination calibration; BASE-LINE; CLASSIFICATION; SCORE;
D O I
10.3389/fneur.2020.00889
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose:Stroke-related functional risk scores are used to predict patients' functional outcomes following a stroke event. We evaluate the predictive accuracy of machine-learning algorithms for predicting functional outcomes in acute ischemic stroke patients after endovascular treatment. Methods:Data were from the Precise and Rapid Assessment of Collaterals with Multi-phase CT Angiography (PROVE-IT), an observational study of 614 ischemic stroke patients. Regression and machine learning models, including random forest (RF), classification and regression tree (CART), C5.0 decision tree (DT), support vector machine (SVM), adaptive boost machine (ABM), least absolute shrinkage and selection operator (LASSO) logistic regression, and logistic regression models were used to train and predict the 90-day functional impairment risk, which is measured by the modified Rankin scale (mRS) score > 2. The models were internally validated using split-sample cross-validation and externally validated in the INTERRSeCT cohort study. The accuracy of these models was evaluated using the area under the receiver operating characteristic curve (AUC), Matthews Correlation Coefficient (MCC), and Brier score. Results:Of the 614 patients included in the training data, 249 (40.5%) had 90-day functional impairment (i.e., mRS > 2). The median and interquartile range (IQR) of age and baseline NIHSS scores were 77 years (IQR = 69-83) and 17 (IQR = 11-22), respectively. Both logistic regression and machine learning models had comparable predictive accuracy when validated internally (AUC range = [0.65-0.72]; MCC range = [0.29-0.42]) and externally (AUC range = [0.66-0.71]; MCC range = [0.34-0.42]). Conclusions:Machine learning algorithms and logistic regression had comparable predictive accuracy for predicting stroke-related functional impairment in stroke patients.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models
    Benzakoun, Joseph
    Charron, Sylvain
    Turc, Guillaume
    Hassen, Wagih Ben
    Legrand, Laurence
    Boulouis, Gregoire
    Naggara, Olivier
    Baron, Jean-Claude
    Thirion, Bertrand
    Oppenheim, Catherine
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (11): : 3085 - 3096
  • [2] The Comparison and Interpretation of Machine-Learning Models in Post-Stroke Functional Outcome Prediction
    Chang, Shih-Chieh
    Chu, Chan-Lin
    Chen, Chih-Kuang
    Chang, Hsiang-Ning
    Wong, Alice M. K.
    Chen, Yueh-Peng
    Pei, Yu-Cheng
    [J]. DIAGNOSTICS, 2021, 11 (10)
  • [3] Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients
    Monteiro, Miguel
    Fonseca, Ana Catarina
    Freitas, Ana Teresa
    Pinho e Melo, Teresa
    Francisco, Alexandre P.
    Ferro, Jose M.
    Oliveira, Arlindo L.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (06) : 1953 - 1959
  • [4] Comparing Machine Learning Algorithms And Regression Models For Predicting Functional Outcome In The Stratis Registry
    Jumaa, Mouhammad A.
    Zoghi, Zeinab
    Zaidi, Syed F.
    Mueller-Kronast, Nils
    Zaidat, Osama
    Castonguay, Alicia C.
    [J]. STROKE, 2022, 53
  • [5] Interpretable Machine Learning Modeling for Ischemic Stroke Outcome Prediction
    Jabal, Mohamed Sobhi
    Joly, Olivier
    Kallmes, David
    Harston, George
    Rabinstein, Alejandro
    Huynh, Thien
    Brinjikji, Waleed
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13
  • [6] Utilizing imaging parameters for functional outcome prediction in acute ischemic stroke: A machine learning study
    Ozkara, Burak B.
    Karabacak, Mert
    Hoseinyazdi, Meisam
    Dagher, Samir A.
    Wang, Richard
    Karadon, Sadik Y.
    Ucisik, F. Eymen
    Margetis, Konstantinos
    Wintermark, Max
    Yedavalli, Vivek S.
    [J]. JOURNAL OF NEUROIMAGING, 2024, 34 (03) : 356 - 365
  • [7] Comparison of machine learning regression algorithms for foot placement prediction
    Chen, Xinxing
    Liu, Zijian
    Zhu, Jiale
    Zhang, Kuangen
    Leng, Yuquan
    Fu, Chenglong
    [J]. 2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [8] Comparison of ischemic stroke diagnosis models based on machine learning
    Yang, Wan-Xia
    Wang, Fang-Fang
    Pan, Yun-Yan
    Xie, Jian-Qin
    Lu, Ming-Hua
    You, Chong-Ge
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13
  • [9] Deep transformation models for functional outcome prediction after acute ischemic stroke
    Herzog, Lisa
    Kook, Lucas
    Gotschi, Andrea
    Petermann, Katrin
    Hansel, Martin
    Hamann, Janne
    Duerr, Oliver
    Wegener, Susanne
    Sick, Beate
    [J]. BIOMETRICAL JOURNAL, 2023, 65 (06)
  • [10] Prediction of early neurological deterioration in acute minor ischemic stroke by machine learning algorithms
    Sung, Sang Min
    Kang, Yoon Jung
    Cho, Han Jin
    Kim, Nae Ri
    Lee, Suk Min
    Choi, Byung Kwan
    Cho, Giphil
    [J]. CLINICAL NEUROLOGY AND NEUROSURGERY, 2020, 195