Deep transformation models for functional outcome prediction after acute ischemic stroke

被引:1
|
作者
Herzog, Lisa [1 ,2 ,3 ]
Kook, Lucas [1 ,2 ]
Gotschi, Andrea [1 ]
Petermann, Katrin [1 ]
Hansel, Martin [3 ]
Hamann, Janne [3 ]
Duerr, Oliver [4 ]
Wegener, Susanne [3 ]
Sick, Beate [1 ,2 ]
机构
[1] Univ Zurich, Epidemiol Biostat & Prevent Inst, Hirschengraben 84, CH-8001 Zurich, Switzerland
[2] Zurich Univ Appl Sci, Inst Data Anal & Proc Design, Tech Str 81, CH-8400 Winterthur, Switzerland
[3] Univ Hosp Zurich, Dept Neurol, Zurich, Switzerland
[4] Konstanz Univ Appl Sci, Inst Opt Syst, Constance, Germany
关键词
deep learning; distributional regression; ordinal regression; transformation models;
D O I
10.1002/bimj.202100379
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many medical applications, interpretable models with high prediction performance are sought. Often, those models are required to handle semistructured data like tabular and image data. We show how to apply deep transformation models (DTMs) for distributional regression that fulfill these requirements. DTMs allow the data analyst to specify (deep) neural networks for different input modalities making them applicable to various research questions. Like statistical models, DTMs can provide interpretable effect estimates while achieving the state-of-the-art prediction performance of deep neural networks. In addition, the construction of ensembles of DTMs that retain model structure and interpretability allows quantifying epistemic and aleatoric uncertainty. In this study, we compare several DTMs, including baseline-adjusted models, trained on a semistructured data set of 407 stroke patients with the aim to predict ordinal functional outcome three months after stroke. We follow statistical principles of model-building to achieve an adequate trade-off between interpretability and flexibility while assessing the relative importance of the involved data modalities. We evaluate the models for an ordinal and dichotomized version of the outcome as used in clinical practice. We show that both tabular clinical and brain imaging data are useful for functional outcome prediction, whereas models based on tabular data only outperform those based on imaging data only. There is no substantial evidence for improved prediction when combining both data modalities. Overall, we highlight that DTMs provide a powerful, interpretable approach to analyzing semistructured data and that they have the potential to support clinical decision-making.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Natural Language Processing Enhances Prediction of Functional Outcome After Acute Ischemic Stroke
    Sung, Sheng-Feng
    Chen, Chih-Hao
    Pan, Ru-Chiou
    Hu, Ya-Han
    Jeng, Jiann-Shing
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (24):
  • [2] OUTCOME PREDICTION IN ACUTE ISCHEMIC STROKE
    Cummock, J.
    Wong, K.
    He, Y.
    Wong, S.
    Volpi, J.
    [J]. INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (1_SUPPL) : 444 - 444
  • [3] In-Hospital Functional Outcome after Acute Ischemic Stroke
    Khan, Muhammad Wazir Ali
    [J]. PAKISTAN JOURNAL OF MEDICAL & HEALTH SCIENCES, 2015, 9 (01): : 347 - 350
  • [4] Glycosylated Hemoglobin and Functional Outcome after Acute Ischemic Stroke
    Lattanzi, Simona
    Bartolini, Marco
    Provinciali, Leandro
    Silvestrini, Mauro
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2016, 25 (07): : 1786 - 1791
  • [5] Predicting functional outcome and survival after acute ischemic stroke
    Weimar, C
    Ziegler, A
    König, IR
    Diener, HC
    [J]. JOURNAL OF NEUROLOGY, 2002, 249 (07) : 888 - 895
  • [6] Predicting functional outcome and survival after acute ischemic stroke
    Christian Weimar
    Andreas Ziegler
    Inke R. König
    Hans-Christoph Diener
    [J]. Journal of Neurology, 2002, 249 : 888 - 895
  • [7] Glycemic is Variability and Functional Outcome After Acute Ischemic Stroke
    Camara-Lemarroy, Carlos
    Gonzalez-Morenos, Emmanuel
    Garza-Villarreal, Eduardo
    Trevino-Herrera, Alan
    Tena-Montiel, Rene
    Muruet, Walter
    Gongora Rivera, Juan
    [J]. NEUROLOGY, 2016, 86
  • [8] Functional Outcome Prediction in Acute Ischemic Stroke Using a Fused Imaging and Clinical Deep Learning Model
    Liu, Yongkai
    Yu, Yannan
    Ouyang, Jiahong
    Jiang, Bin
    Yang, Guang
    Ostmeier, Sophie
    Wintermark, Max
    Michel, Patrik
    Liebeskind, David S.
    Lansberg, Maarten G.
    Albers, Gregory W.
    Zaharchuk, Greg
    [J]. STROKE, 2023, 54 (09) : 2316 - 2327
  • [9] Prediction of the functional outcome of acute recurrent cerebral ischemic hemispheric stroke
    Koziolkin, O. A.
    Kuznietsov, A. A.
    Novikova, L., V
    [J]. PATHOLOGIA, 2018, (03): : 354 - 359
  • [10] Predictors and Early Outcome of Hemorrhagic Transformation after Acute Ischemic Stroke
    Kablau, Micha
    Kreisel, Stefan H.
    Sauer, Tamara
    Binder, Johannes
    Szabo, Kristina
    Hennerici, Michael G.
    Kern, Rolf
    [J]. CEREBROVASCULAR DISEASES, 2011, 32 (04) : 334 - 341