Randomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generation

被引:27
|
作者
Liu, Wei [1 ]
Xu, Yan [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
关键词
neural nets; decision making; learning (artificial intelligence); stochastic processes; optimisation; probability; photovoltaic power systems; solar photovoltaic generation; stochastic optimisation-based power system dispatch; robust optimisation-based power system dispatch; randomised learning-based hybrid ensemble model; prediction intervals; probabilistic PV forecasting; extreme learning machine; randomised vector functional link; stochastic configuration network; hybrid forecasting model; individual outputs; aggregated outputs; final point forecast results; model misspecification uncertainty; data noise uncertainty; RLHE model; probabilistic forecasting; PV power generation; PHOTOVOLTAIC GENERATION; SOLAR IRRADIANCE; PREDICTION INTERVALS; UNCERTAINTY; MACHINE;
D O I
10.1049/iet-gtd.2020.0625
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Probabilistic forecasting of solar photovoltaic (PV) generation is critical for stochastic or robust optimisation-based power system dispatch. This study proposes a randomised learning-based hybrid ensemble (RLHE) model to construct the prediction intervals of probabilistic PV forecasting. Three different randomised learning algorithms, namely extreme learning machine, randomised vector functional link, and stochastic configuration network, are ensembled as a hybrid forecasting model. Besides, bootstrap is used as the ensemble learning framework to increase the diversity of training samples. For each algorithm, a decision-making rule is designed to evaluate the credibility of the individual outputs and the incredible ones are discarded at the output aggregation step. The weight coefficients of the aggregated outputs of the three algorithms are then optimised to compute the final point forecast results. Based on the point forecast results, the prediction intervals are constructed considering both model misspecification uncertainty and data noise uncertainty. The variance in model misspecification uncertainty is directly calculated with the individual outputs and the variance in data noise uncertainty is separately trained with an RLHE model. The proposed method is tested with an open dataset and compared with several benchmarking approaches.
引用
收藏
页码:5909 / 5917
页数:9
相关论文
共 50 条
  • [31] A novel ensemble learning-based grey model for electricity supply forecasting in China
    Cai, Yubin
    Ma, Xin
    AIMS MATHEMATICS, 2021, 6 (11): : 12339 - 12358
  • [32] Forecasting of Power Generation in Hybrid PV-Wind System
    Siva, A. Subramaniya
    Elakkiya, G.
    Vaishaly, A. Leli
    Nisha, I. Libiya
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 72 - 75
  • [33] Day-Ahead Nonparametric Probabilistic Forecasting of Photovoltaic Power Generation Based on the LSTM-QRA Ensemble Model
    Mei, Fei
    Gu, Jiaqi
    Lu, Jixiang
    Lu, Jinjun
    Zhang, Jiatang
    Jiang, Yuhan
    Shi, Tian
    Zheng, Jianyong
    IEEE ACCESS, 2020, 8 : 166138 - 166149
  • [34] A reinforcement learning-based ensemble forecasting framework for renewable energy forecasting
    Wu, Zhiyuan
    Fang, Guohua
    Ye, Jian
    Zhu, David Z.
    Huang, Xianfeng
    RENEWABLE ENERGY, 2025, 244
  • [35] Research and application of a hybrid model based on Meta learning strategy for wind power deterministic and probabilistic forecasting
    Hu, Jianming
    Heng, Jiani
    Tang, Jingwei
    Guo, Miaolin
    ENERGY CONVERSION AND MANAGEMENT, 2018, 173 : 197 - 209
  • [36] EGMA: Ensemble Learning-Based Hybrid Model Approach for Spam Detection
    Bilgen, Yusuf
    Kaya, Mahmut
    APPLIED SCIENCES-BASEL, 2024, 14 (21):
  • [37] A hybrid model of CNN and LSTM autoencoder-based short-term PV power generation forecasting
    Ibrahim, Mohamed Sayed
    Gharghory, Sawsan Morkos
    Kamal, Hanan Ahmed
    ELECTRICAL ENGINEERING, 2024, 106 (04) : 4239 - 4255
  • [38] A Hybrid Probabilistic Estimation Method for Photovoltaic Power Generation Forecasting
    Cheng, Ze
    Liu, Qi
    Xing, Yuhan
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 173 - 178
  • [39] Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model
    Abdellatif, Abdallah
    Mubarak, Hamza
    Ahmad, Shameem
    Ahmed, Tofael
    Shafiullah, G. M.
    Hammoudeh, Ahmad
    Abdellatef, Hamdan
    Rahman, M. M.
    Gheni, Hassan Muwafaq
    SUSTAINABILITY, 2022, 14 (17)
  • [40] Probabilistic Wind Power Prediction Based on Ensemble Weather Forecasting
    Nohara, Daisuke
    Ohba, Masamichi
    Watanabe, Takeshi
    Kadokura, Shinji
    IFAC PAPERSONLINE, 2020, 53 (02): : 12151 - 12156