Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences

被引:21
|
作者
Kritzer, P
机构
[1] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
[2] Univ New S Wales, Sydney, NSW, Australia
基金
奥地利科学基金会;
关键词
(t; m; s)-net; s)-sequence; star discrepancy;
D O I
10.1016/j.jco.2005.10.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The concepts of (t, m, s)-nets and (t, s)-sequences are among the best known classes of point sets in the theory of quasi-Monte Carlo methods. In this paper, we give new general upper bounds for the star discrepancy of (t, m, s)-nets and (t, s)-sequences. By these findings, we improve existing upper bounds on the discrepancy of such point sets and extend results that have been obtained for low-dimensional nets and sequences during the past years. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 347
页数:12
相关论文
共 50 条
  • [31] Improved discrepancy bounds for hybrid sequences involving Halton sequences
    Niederreiter, Harald
    [J]. ACTA ARITHMETICA, 2012, 155 (01) : 71 - 84
  • [32] Walsh series analysis of the star discrepancy of digital nets and sequences
    Larcher, G
    Pillichshammer, F
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 315 - 327
  • [33] A combinatorial characterization of (t,m,s)-nets in base b
    Lawrence, KM
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 1996, 4 (04) : 275 - 293
  • [34] A Family of Binary (t, m,s)-Nets of Strength 5
    Jürgen Bierbrauer
    Yves Edel
    [J]. Designs, Codes and Cryptography, 2005, 37 : 211 - 214
  • [35] On the dependence structure and quality of scrambled (t, m, s)-nets
    Wiart, Jaspar
    Lemieux, Christiane
    Dong, Gracia Y.
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (01): : 1 - 26
  • [36] A family of binary (t, m,s)-Nets of strength 5
    Bierbrauer, J
    Edel, Y
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2005, 37 (02) : 211 - 214
  • [37] A variant of Atanassov's method for (t, s)-sequences and (t, e, s)-sequences
    Faure, Henri
    Lemieux, Christiane
    [J]. JOURNAL OF COMPLEXITY, 2014, 30 (05) : 620 - 633
  • [38] A note on (s, t)-weak tractability of the weighted star discrepancy of regular grids
    Zhang, Jie
    [J]. JOURNAL OF COMPLEXITY, 2021, 66
  • [39] (t, m, s) -Nets and Maximized Minimum Distance, Part II
    Gruenschloss, Leonhard
    Keller, Alexander
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 395 - 409
  • [40] Association schemes for ordered orthogonal arrays and (T, M, S)-nets
    Martin, WJ
    Stinson, DR
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (02): : 326 - 346