Design of a pH-Dependent Molecular Switch in a Caged Protein Platform

被引:51
|
作者
Dalmau, Merce [1 ]
Lim, Sierin [1 ]
Wang, Szu-Wen [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
BROME MOSAIC-VIRUS; HEAT-SHOCK-PROTEIN; CRYSTALLOGRAPHIC STRUCTURE; CRYOELECTRON MICROSCOPY; MULTIENZYME COMPLEX; CAPSID PROTEIN; DEHYDROGENASE; POLYMORPHISM; PARTICLES; DELIVERY;
D O I
10.1021/nl8027069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembling protein cages provide a wide range of possible applications in nanotechnology. We report the first example of an engineered pH-dependent molecular switch in a virus-like particle. By genetically manipulating the subunit-subunit interface of the E2 subunit of pyruvate dehydrogenase, we introduce pH-responsive assembly into a scaffold that is natively stable at both pH 5.0 and 7.4. The redesigned protein module yields an intact, stable particle at pH 7.4 that dissociates at pH 5.0. This triggered behavior is especially relevant for applications in therapeutic delivery.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 50 条
  • [21] Design of a reversible inversed pH-responsive caged protein
    Peng, Tao
    Lee, Hwankyu
    Lim, Sierin
    BIOMATERIALS SCIENCE, 2015, 3 (04) : 627 - 635
  • [22] Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties
    Alexov, E. G.
    Gunner, M. R.
    Biophysical Journal, 72 (05):
  • [23] Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties
    Alexov, EG
    Gunner, MR
    BIOPHYSICAL JOURNAL, 1997, 72 (05) : 2075 - 2093
  • [24] Molecular Mechanism of a Green-Shifted, pH-Dependent Red Fluorescent Protein mKate Variant
    Wang, Qi
    Byrnes, Laura J.
    Shui, Bo
    Roehrig, Ute F.
    Singh, Avtar
    Chudakov, Dmitriy M.
    Lukyanov, Sergey
    Zipfel, Warren R.
    Kotlikoff, Michael I.
    Sondermann, Holger
    PLOS ONE, 2011, 6 (08):
  • [25] A pH-dependent switch promotes β-synuclein fibril formation via glutamate residues
    Moriarty, Gina M.
    Olson, Michael P.
    Atieh, Tamr B.
    Janowska, Maria K.
    Khare, Sagar D.
    Baum, Jean
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (39) : 16368 - 16379
  • [26] Histidine-tailed microperoxidase-10: A pH-dependent ligand switch
    Cheek, J
    Low, DW
    Gray, HB
    Dawson, JH
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 253 (02) : 195 - 198
  • [27] Approach to Study pH-Dependent Protein Association Using Constant-pH Molecular Dynamics: Application to the Dimerization of β-Lactoglobulin
    da Rocha, Lucie
    Baptista, Antonio M.
    Campos, Sara R. R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (03) : 1982 - 2001
  • [28] PH-DEPENDENT MOLECULAR RECOGNITION PERFORMED BY A POLYCATIONIC CUBIC AZAPARACYCLOPHANE
    MURAKAMI, Y
    KIKUCHI, JI
    OHNO, T
    HIRAYAMA, T
    NISHIMURA, H
    CHEMISTRY LETTERS, 1989, (07) : 1199 - 1202
  • [29] Molecular Origin of pH-Dependent Fibril Formation of a Functional Amyloid
    McGlinchey, Ryan P.
    Jiang, Zhiping
    Lee, Jennifer C.
    CHEMBIOCHEM, 2014, 15 (11) : 1569 - 1572
  • [30] pH-dependent conformational dynamics of AcrA: Insights into molecular mechanisms
    Yue, Zhi
    Shen, Jana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246