Global Euler obstruction, global Brasselet numbers and critical points

被引:2
|
作者
Dutertre, Nicolas [1 ]
Grulha, Nivaldo G., Jr. [2 ]
机构
[1] UNIV Angers, SFR MathStic, Lab Angevin Rech Math, LAREMA,UMR6093,CNRS, 2 Bd Lavoisier, F-49045 Angers 01, France
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp USP, Av Trabalhador Sao Carlense 400,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Euler obstruction; global Euler obstruction; constructible functions; Morsefications; MILNOR NUMBERS; INDEX FORMULA; SINGULARITIES; TOPOLOGY; CYCLES;
D O I
10.1017/prm.2019.30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
LetX subset of DOUBLE-STRUCK CAPITAL C(n)be an equidimensional complex algebraic set and letf:X -> DOUBLE-STRUCK CAPITAL C be a polynomial function. For eachc is an element of DOUBLE-STRUCK CAPITAL C, we define the global Brasselet number offatc, a global counterpart of the Brasselet number defined by the authors in a previous work, and the Brasselet number at infinity offatc. Then we establish several formulas relating these numbers to the topology ofXand the critical points off.
引用
收藏
页码:2503 / 2534
页数:32
相关论文
共 50 条