Global Euler obstruction, global Brasselet numbers and critical points

被引:2
|
作者
Dutertre, Nicolas [1 ]
Grulha, Nivaldo G., Jr. [2 ]
机构
[1] UNIV Angers, SFR MathStic, Lab Angevin Rech Math, LAREMA,UMR6093,CNRS, 2 Bd Lavoisier, F-49045 Angers 01, France
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp USP, Av Trabalhador Sao Carlense 400,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Euler obstruction; global Euler obstruction; constructible functions; Morsefications; MILNOR NUMBERS; INDEX FORMULA; SINGULARITIES; TOPOLOGY; CYCLES;
D O I
10.1017/prm.2019.30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
LetX subset of DOUBLE-STRUCK CAPITAL C(n)be an equidimensional complex algebraic set and letf:X -> DOUBLE-STRUCK CAPITAL C be a polynomial function. For eachc is an element of DOUBLE-STRUCK CAPITAL C, we define the global Brasselet number offatc, a global counterpart of the Brasselet number defined by the authors in a previous work, and the Brasselet number at infinity offatc. Then we establish several formulas relating these numbers to the topology ofXand the critical points off.
引用
收藏
页码:2503 / 2534
页数:32
相关论文
共 50 条
  • [1] Euler obstruction, Brasselet number and critical points
    Dutertre, Nicolas
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (02)
  • [2] Global Euler obstruction and polar invariants
    José Seade
    Mihai Tibăr
    Alberto. Verjovsky
    Mathematische Annalen, 2005, 333 : 393 - 403
  • [3] Global Euler obstruction and polar invariants
    Seade, J
    Tibâr, M
    Verjovsky, A
    MATHEMATISCHE ANNALEN, 2005, 333 (02) : 393 - 403
  • [4] Global Frobenius Betti Numbers and Frobenius Euler Characteristics
    De Stefani, Alessandro
    Polstra, Thomas
    Yao, Yongwei
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (03) : 533 - 552
  • [5] Global divisibility of Heegner points and Tamagawa numbers
    Jetchev, Dimitar
    COMPOSITIO MATHEMATICA, 2008, 144 (04) : 811 - 826
  • [6] Milnor numbers and Euler obstruction*
    José Seade
    Mihai Tibăr
    Alberto Verjovsky
    Bulletin of the Brazilian Mathematical Society, 2005, 36 : 275 - 283
  • [7] Milnor numbers and Euler obstruction
    Seade, J
    Tibar, M
    Verjovsky, A
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (02): : 275 - 283
  • [8] A THEOREM OF CRITICAL POINTS AND GLOBAL ASYMPTOTIC STABILITY
    MARTIN, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 168 - &
  • [10] Prediction of critical points: A new methodology using global optimization
    Henderson, N
    Freitas, U
    Platt, GM
    AICHE JOURNAL, 2004, 50 (06) : 1300 - 1314