Formal language convexity in left-orderable groups

被引:4
|
作者
Su, Hang Lu [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] CSIC UAM UC3M UCM, Inst Ciencias Matemit, Madrid, Spain
关键词
Left-orderable group; regular language; finitely generated positive cones; semigroups; acylindrically hyperbolic groups;
D O I
10.1142/S0218196720500472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a criterion for preserving the regularity of a formal language representation when passing from groups to subgroups. We use this criterion to show that the regularity of a positive cone language in a left-orderable group passes to its finite index subgroups, and to show that there exists no left order on a finitely generated acylindrically hyperbolic group such that the corresponding positive cone is represented by a quasi-geodesic regular language. We also answer one of Navas' questions by giving an example of an infinite family of groups which admit a positive cone that is generated by exactly k generators, for every k >= 3. As a special case of our construction, we obtain a finitely generated positive cone for F-2 x Z.
引用
收藏
页码:1437 / 1456
页数:20
相关论文
共 50 条
  • [21] On *-orderable groups
    Klep, I
    Moravec, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 200 (1-2) : 25 - 35
  • [22] Non-left-orderable 3-manifold groups
    Dabkowski, MK
    Przytycki, JH
    Togha, AA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (01): : 32 - 40
  • [23] Isotropic nonarchimedean S-arithmetic groups are not left orderable
    Lifschitz, L
    Morris, DW
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (06) : 417 - 420
  • [24] On Borel orderable groups
    Christensen, JRP
    Kanovei, V
    Reeken, M
    TOPOLOGY AND ITS APPLICATIONS, 2001, 109 (03) : 285 - 299
  • [25] COMPLETELY ORDERABLE GROUPS
    TEREKHOV, AA
    DOKLADY AKADEMII NAUK SSSR, 1959, 129 (01): : 34 - 36
  • [26] On centrally orderable groups
    Bludov, VV
    Glass, AMW
    Rhelutulla, AH
    JOURNAL OF ALGEBRA, 2005, 291 (01) : 129 - 143
  • [27] LATTICE ORDERABLE GROUPS
    TODORINOV, SA
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1982, 35 (09): : 1189 - 1191
  • [28] COMMUTATORS IN ORDERABLE GROUPS
    FOX, CD
    COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) : 213 - 217
  • [29] On orderable poly engel groups
    Kim, Yangkok
    Rhemtulla, Akbar
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (08) : 3023 - 3027
  • [30] AMENABILITY AND RIGHT ORDERABLE GROUPS
    KROPHOLLER, PH
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 : 347 - 352