Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data

被引:126
|
作者
Kim, Jong Kyoung [1 ]
Marioni, John C. [1 ]
机构
[1] European Bioinformat Inst EMBL EBI, Hinxton CB10 1SD, Cambs, England
来源
GENOME BIOLOGY | 2013年 / 14卷 / 01期
关键词
gene regulation; RNA-seq; single-cell; statistics; transcriptional burst; EMBRYONIC STEM-CELLS; SEQ; NOISE; DYNAMICS; STATE;
D O I
10.1186/gb-2013-14-1-r7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genetically identical populations of cells grown in the same environmental condition show substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts. Results: We develop a statistical framework for studying the kinetics of stochastic gene expression from single-cell RNA-seq data. By applying our model to a single-cell RNA-seq dataset generated by profiling mouse embryonic stem cells, we find that the inferred kinetic parameters are consistent with RNA polymerase II binding and chromatin modifications. Our results suggest that histone modifications affect transcriptional bursting by modulating both burst size and frequency. Furthermore, we show that our model can be used to identify genes with slow promoter kinetics, which are important for probabilistic differentiation of embryonic stem cells. Conclusions: We conclude that the proposed statistical model provides a flexible and efficient way to investigate the kinetics of transcription.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Integration single-cell and bulk RNA-sequencing data to reveal senescence gene expression profiles in heart failure
    Kuai, Zheng
    Hu, Yu
    HELIYON, 2023, 9 (06)
  • [22] Combining bulk and single-cell RNA-sequencing data to reveal gene expression pattern of chondrocytes in the osteoarthritic knee
    Li, Xiaoyu
    Liao, Zheting
    Deng, Zhonghao
    Chen, Nachun
    Zhao, Liang
    BIOENGINEERED, 2021, 12 (01) : 997 - 1007
  • [23] Differential gene expression analysis in single-cell RNA sequencing data
    Wang, Tianyu
    Nabavi, Sheida
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 202 - 207
  • [24] Single-cell RNA-sequencing in asthma research
    Tang, Weifeng
    Li, Mihui
    Teng, Fangzhou
    Cui, Jie
    Dong, Jingcheng
    Wang, Wenqian
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [25] Single-cell isolation by a modular single-cell pipette for RNA-sequencing
    Zhang, Kai
    Gao, Min
    Chong, Zechen
    Li, Ying
    Han, Xin
    Chen, Rui
    Qin, Lidong
    LAB ON A CHIP, 2016, 16 (24) : 4742 - 4748
  • [26] Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods
    Dal Molin, Alessandra
    Baruzzo, Giacomo
    Di Camillo, Barbara
    FRONTIERS IN GENETICS, 2017, 8
  • [27] Improved deconvolution of combined bulk and single-cell RNA-sequencing data
    Lei, Haoyun
    Guo, Xiaoyan A.
    Tao, Yifeng
    Ding, Kai
    Fu, Xuecong
    Oesterreich, Steffi
    Lee, Adrian V.
    Schwartz, Russell
    CANCER RESEARCH, 2022, 82 (12)
  • [28] Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data
    Zhang, Lihua
    Zhang, Shihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 376 - 389
  • [29] Consensus Nature Inspired Clustering of Single-Cell RNA-Sequencing Data
    Abou El-Naga, Amany H.
    Sayed, Sabah
    Salah, Akram
    Mohsen, Heba
    IEEE ACCESS, 2022, 10 : 98079 - 98094
  • [30] Missing data and technical variability in single-cell RNA-sequencing experiments
    Hicks, Stephanie C.
    Townes, F. William
    Teng, Mingxiang
    Irizarry, Rafael A.
    BIOSTATISTICS, 2018, 19 (04) : 562 - 578