Integrable discretisations for a class of nonlinear Schrodinger equations on Grassmann algebras

被引:28
|
作者
Grahovski, Georgi G. [1 ,2 ]
Mikhailov, Alexander V. [1 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[2] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
基金
英国工程与自然科学研究理事会;
关键词
SUPERSYMMETRIC KDV EQUATION; TODA LATTICE; BACKLUND-TRANSFORMATIONS; DIFFERENCE-EQUATIONS; HIERARCHY; EXTENSION; SYSTEMS; OPERATORS;
D O I
10.1016/j.physleta.2013.10.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrable discretisations for a class of coupled (super) nonlinear Schrodinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3254 / 3259
页数:6
相关论文
共 50 条
  • [1] Three nonlinear integrable couplings of the nonlinear Schrodinger equations
    Wang Hui
    Xia Tie-cheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4232 - 4237
  • [2] Engineering integrable nonautonomous nonlinear Schrodinger equations
    He, Xu-Gang
    Zhao, Dun
    Li, Lin
    Luo, Hong-Gang
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [3] Integrable discretization of coupled nonlinear Schrodinger equations
    Tsuchida, T
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 269 - 278
  • [4] New integrable equations of nonlinear Schrodinger type
    Calogero, F
    Degasperis, A
    STUDIES IN APPLIED MATHEMATICS, 2004, 113 (01) : 91 - 137
  • [5] Integrable discretizations of derivative nonlinear Schrodinger equations
    Tsuchida, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7827 - 7847
  • [6] Integrable nonlocal derivative nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    Zhu, Yi
    INVERSE PROBLEMS, 2022, 38 (06)
  • [7] CLASS OF NONLINEAR SCHRODINGER EQUATIONS
    MIURA, RM
    CROOKE, PS
    SIAM REVIEW, 1974, 16 (01) : 133 - 133
  • [8] An Alternative Approach to Integrable Discrete Nonlinear Schrodinger Equations
    Demontis, Francesco
    van der Mee, Cornelis
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 169 - 191
  • [9] Integrable properties of the general coupled nonlinear Schrodinger equations
    Wang, Deng-Shan
    Zhang, Da-Jun
    Yang, Jianke
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [10] Fractional integrable and related discrete nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Been, Joel B.
    Carr, Lincoln D.
    PHYSICS LETTERS A, 2022, 452